Silicon tetraazide is a thermally unstable binary compound of silicon and nitrogen with a nitrogen content of 85.7%. This high-energy compound combusts spontaneously and can only be studied in a solution. A further coordination to a six-fold coordinated structure such as a hexaazido silicide 2− or as an adduct with bicationic ligands Si4L2 will result in relatively stable, crystalline solids that can be handled at room temperature.
Silicon tetraazide is a white [crystalline compound that will detonate at even 0 °C. The pure compound, and also silicon chloride triazide and silicon dichloride diazide contaminated samples, can detonate spontaneously without clear cause. The compound is susceptible to hydrolysis. It is soluble in diethylether and benzene. The addition compound with 2,2′-bipyridine is much more stable. A melting point of 212 °C with a melting enthalpy of 110 J·g−1 is recorded. The DSC measurement shows at 265 °C a sharpexothermic reaction with an enthalpy of −2400 J·g−1. Similar results are found for the addition compound with 1,10-phenanthroline. As the hemiacetonitrile solvatated isolated compound expels solvent at 100 °C, and shows then in the DSC measurement from 240 °C onwards a strong exothermic reaction with a generated heat of 2300 J·g−1. The enthalpies are higher than that of sodium azide with −800 J·g−1, but still lower than the values encountered with classic explosives such as RDX with −4500 J·g−1. The addition compounds are stable in solution. It can be concluded from IR-spectroscopy and proton NMR data that no dissociation occurs in silicon tetraazide and 2,2'-bipyridine or for example 1,10-phenanthroline. The bisiminiumhexaazidosilicate salt 2Si on the other hand is relatively stable. the compound melts at 214 °C and shows in the DSC measurement at 250 °C a reaction. One mass spectrometry coupled thermogravimetric analysisinvestigation indicated as reaction products nitrogen, silicon tetraazide and hydrazoic acid.
Applications
A practical application of free silicon tetraazide is unlikely due to the high instability. In solution the compound has potential uses as raw material for nitrogen-rich materials. One application as reagent in the manufacture of polyolefins has been patented. The stabilized adducts can serve as energetic compounds as a replacement for lead azide.