Sloth


Sloths are a group of arboreal Neotropical xenathran mammals, constituting the suborder Folivora. Noted for slowness of movement, they spend most of their lives hanging upside down in the trees of the tropical rain forests of South America and Central America. They are considered to be most closely related to anteaters, together making up the xenarthran order Pilosa. There are six extant sloth species in two genera – Bradypus and Choloepus. Despite this traditional naming, all sloths actually have three toes on each rear limb, although two-toed sloths have only two digits on each forelimb. The two groups of sloths are from different, distantly related families, and are thought to have evolved their morphology via parallel evolution from terrestrial ancestors. Besides the extant species, many species of ground sloth ranging up to the size of elephants like Megatherium inhabited both North and South America during the Pleistocene epoch. However, they became extinct during the Quaternary extinction event around 12,000 years ago, together with most large bodied animals in the New World. The extinction correlates in time with the arrival of humans, but climate change has also been suggested to have contributed. Members of an endemic radiation of Caribbean sloths formerly lived in the Greater Antilles. They included both ground and arboreal forms which became extinct after humans settled the archipelago in the mid-Holocene, around 6,000 years ago.
Sloths are so named because of its very low metabolism and deliberate movements, sloth being related to the word slow. This supports their low-energy diet of leaves and avoids detection by predatory hawks and cats that hunt by sight. Sloths are almost helpless on the ground but are able to swim. The shaggy coat has grooved hair that is host to symbiotic green algae which camouflages the animal in the trees and provides it nutrients. The algae also nourishes sloth moths, some species of which exist solely on sloths.

Taxonomy and evolution

Sloths belong to the superorder Xenarthra, a group of placental mammals believed to have evolved in the continent of South America around 60 million years ago. One study found that xenarthrans broke off from other placental mammals around 100 million years ago. Anteaters and armadillos are also included among Xenarthra. The earliest xenarthrans were arboreal herbivores with sturdy vertebral columns, fused pelvises, stubby teeth, and small brains. Sloths are in the taxonomic suborder Folivora of the order Pilosa. These names are from the Latin 'leaf eater' and 'hairy', respectively. Pilosa is one of the smallest of the orders of the mammal class; its only other suborder contains the anteaters.
The Folivora are divided into at least eight families, only two of which have living species; the remainder are entirely extinct :

Evolution

The common ancestor of the two existing sloth genera dates to about 28 million years ago, with similarities between the two- and three- toed sloths an example of convergent evolution to an arboreal lifestyle, “one of the most striking examples of convergent evolution known among mammals”. The ancient Xenarthra included a much greater variety of species, with a wider distribution, than those of today. Ancient sloths were mostly terrestrial, and some reached sizes that rival those of elephants, as was the case for Megatherium.
and restoration
Sloths arose in South America during its long period of isolation and eventually spread to a number of the Caribbean islands as well as North America. It is thought that swimming led to oceanic dispersal of pilosans to the Antilles by the Oligocene, and that the megalonychid Pliometanastes and the mylodontid Thinobadistes were able to colonise North America about 9 million years ago, well before the formation of the Isthmus of Panama. The latter development, about 3 million years ago, allowed megatheriids and nothrotheriids to also invade North America as part of the Great American Interchange. Additionally, the nothrotheriid Thalassocnus of the west coast of South America became adapted to a semiaquatic and eventually perhaps fully aquatic marine lifestyle. In Peru and Chile, Thalassocnus entered the coastal habitat beginning in the late Miocene. Initially they just stood in the water, but over a span of four million years they eventually evolved into swimming creatures, becoming specialist bottom feeders of seagrasses, similar to extant marine sirenians.
Both types of extant tree sloth tend to occupy the same forests; in most areas, a particular species of the somewhat smaller and generally slower-moving three-toed sloth and a single species of the two-toed type will jointly predominate. Based on morphological comparisons, it was thought the two-toed sloths nested phylogenetically within one of the divisions of the extinct Caribbean sloths. Though data has been collected on over 33 different species of sloths by analyzing bone structures, many of the relationships between clades on a phylogenetic tree were unclear. Much of the morphological evidence collected to support the hypothesis of diphyly has been based on the structure of the inner ear.
Recently obtained molecular data from collagen and mitochondrial DNA sequences fall in line with the diphyly hypothesis, but have overturned some of the other conclusions obtained from morphology. These investigations consistently place two-toed sloths close to mylodontids and three-toed sloths within Megatherioidea, close to Megalonyx, megatheriids and nothrotheriids. They make the previously recognized family Megalonychidae polyphyletic, with both two-toed sloths and the Caribbean sloths being moved away from Megalonyx. Caribbean sloths are now placed in a separate, basal branch of the sloth evolutionary tree.

Phylogeny

The following sloth family phylogenetic tree is based on collagen and mitochondrial DNA sequence data.

Extinctions

The marine sloths of South America's Pacific coast became extinct at the end of the Pliocene following the closing of the Central American Seaway; this caused a cooling trend in the coastal waters which killed off much of the area's seagrass.
Ground sloths disappeared from both North and South America shortly after the appearance of humans about 11,000 years ago. Evidence suggests human hunting contributed to the extinction of the American megafauna. Ground sloth remains found in both North and South America indicate that they were killed, cooked, and eaten by humans. Climate change that came with the end of the last ice age may have also played a role.
Megalocnus and some other Caribbean sloths survived until about 5000 years ago, long after ground sloths had died out on the mainland, but then went extinct when humans finally colonized the Antilles.

Biology

Morphology and anatomy

Sloths can be long and, depending on species, weigh from. Two-toed sloths are slightly larger. Sloths have long limbs and rounded heads with tiny ears. Three-toed sloths also have stubby tails about long.
Sloths are unusual among mammals in not having seven cervical vertebrae. Two-toed sloths have five to seven, while three-toed sloths have eight or nine. The other mammal not having seven is the Manatee, with six.

Physiology

Sloths have colour vision, but have poor visual acuity. They also have poor hearing. Thus, they rely on their sense of smell and touch to find food.
Sloths have very low metabolic rates, and low body temperatures: when active, and still lower when resting. Sloths are heterothermic, meaning their body temperature may vary according to the environment, normally ranging from, but able to drop to as low as, inducing torpor.
The outer hairs of sloth fur grow in a direction opposite from that of other mammals. In most mammals, hairs grow toward the extremities, but because sloths spend so much time with their limbs above their bodies, their hairs grow away from the extremities to provide protection from the elements while they hang upside down. In most conditions, the fur hosts symbiotic algae, which provide camouflage from predatory jaguars, ocelots, and harpy eagles. Because of the algae, sloth fur is a small ecosystem of its own, hosting many species of commensal and parasitic arthropods. There are a large number of arthropods associated with sloths. These include biting and blood-sucking flies such as mosquitoes and sandflies, triatomine bugs, lice, ticks and mites. Sloths have a highly specific community of commensal beetles, mites and moths. Species of sloths recorded to host arthropods include: the pale-throated sloth, the brown-throated sloth, and Linnaeus's two-toed sloth. Incidentally, it appears that sloths benefit from their relationship with moths because the moths are responsible for fertilizing algae on the sloth, which provides them with nutrients.

Activity

Their limbs are adapted for hanging and grasping, not for supporting their weight. Muscles make up only 25 to 30 percent of their total body weight. Most other mammals have a muscle mass that makes up 40 to 45 percent of the total body weight. Their specialised hands and feet have long, curved claws to allow them to hang upside down from branches without effort, and are used to drag themselves along the ground, since they cannot walk. On three-toed sloths, the arms are 50 percent longer than the legs.
Sloths move only when necessary and even then very slowly. They usually move at an average speed of per minute, but can move at a marginally higher speed of, if they are in immediate danger from a predator. While they sometimes sit on top of branches, they usually eat, sleep, and even give birth hanging from branches. They sometimes remain hanging from branches even after death. On the ground, the maximum speed of sloths is per minute. Two-toed sloths are generally better able than three-toed sloths to disperse between clumps of trees on the ground.
Sloths are surprisingly strong swimmers and can reach speeds of per minute. They use their long arms to paddle through the water and can cross rivers and swim between islands. Sloths can reduce their already slow metabolism even further and slow their heart rate to less than a third of normal, allowing them to hold their breath underwater for up to 40 minutes.
Wild brown-throated three-toed sloths sleep on average 9.6 hours a day. Two-toed sloths are nocturnal. Three-toed sloths are mostly nocturnal, but can be active in the day. They spend 90 per cent of their time motionless.

Diet

Baby sloths learn what to eat by licking the lips of their mother. All sloths eat the leaves of the cecropia.
Two-toed sloths have a diverse diet of insects, carrion, fruits, leaves and small lizards, ranging over up to 140 hectares. Three-toed sloths, on the other hand, have a limited diet of leaves from only a few trees, and no mammal digests as slowly.
They have made adaptations to arboreal browsing. Leaves, their main food source, provide very little energy or nutrients, and do not digest easily, so sloths have large, slow-acting stomachs with multiple compartments in which symbiotic bacteria break down the tough leaves. As much as two-thirds of a well-fed sloth's body weight consists of the contents of its stomach, and the digestive process can take a month or more to complete.
Three-toed sloths go to the ground to urinate and defecate about once a week, digging a hole and covering it afterwards. They go to the same spot each time and are vulnerable to predation while doing so. This behaviour may be related to maintaining the ecosystem in the sloths' fur. Individual sloths tend to spend the bulk of their time feeding on a single "modal" tree; by burying their excreta near the trunk of that tree, they may help nourish it. Recent research shows that moths, which live in the sloth's fur, lay eggs in the sloth's feces. When they hatch, the larvae feed on the feces, and when mature fly up onto the sloth above.

Reproduction

Pale- and brown-throated species mate seasonally, while the maned sloth breeds at any time of year. The reproduction of pygmy three-toed sloths is unknown. Litters are of one newborn only, after six months' gestation for three-toed, and 12 months' for two-toed. Newborns stay with their mother for about five months. In some cases, young sloths die from a fall indirectly because the mothers prove unwilling to leave the safety of the trees to retrieve the young. Females normally bear one baby every year, but sometimes sloths' low level of movement actually keeps females from finding males for longer than one year. Sloths are not particularly sexually dimorphic and several zoos have received sloths of the wrong sex.
The average lifespan of two-toed sloths in the wild is currently unknown due to a lack of full-lifespan studies in a natural environment. Median life expectancy in human care is about 16 years, with one individual at the Smithsonian Institution's National Zoo reaching an age of 49 years before her death.

Distribution

Although habitat is limited to the tropical rainforests of South and Central America, in that environment sloths are successful. On Barro Colorado Island in Panama, sloths have been estimated to comprise 70% of the biomass of arboreal mammals. Four of the six living species are presently rated "least concern"; the maned three-toed sloth, which inhabits Brazil's dwindling Atlantic Forest, is classified as "vulnerable", while the island-dwelling pygmy three-toed sloth is critically endangered. Sloth's lower metabolism confines them to the tropics and they adopt thermoregulation behaviors of cold-blooded animals like sunning themselves.

Human relations

The majority of recorded sloth deaths in Costa Rica are due to contact with electrical lines and poachers. Their claws also provide another, unexpected deterrent to human hunters; when hanging upside-down in a tree, they are held in place by the claws themselves and often do not fall down even if shot from below.
Sloths are victims of animal trafficking where they are sold as pets. However they make very poor pets as they have such a specialized ecology.
The founder and director of the Green Heritage Fund Suriname, Monique Pool, has helped rescue and release more than 600 sloths, anteaters, armadillos, and porcupines.
The Sloth Institute Costa Rica is known for caring, rehabilitating and releasing sloths back into the wild. Also in Costa Rica, the Aviarios Sloth Sanctuary cares for sloths. It rehabilitated and released about 130 individuals back into the wild. However, a report in May 2016 featured two former veterinarians from the facility who were intensely critical of the sanctuary's efforts, accusing it of mistreating the animals.