Small form-factor pluggable transceiver
The small form-factor pluggable is a compact, hot-pluggable network interface module used for both telecommunication and data communications applications. The form factor and electrical interface are specified by a multi-source agreement under the auspices of the Small Form Factor Committee. It is a popular industry format jointly developed and supported by many network component vendors. The advantage of using SFPs instead of fixed interfaces is that the interface port can be equipped with any suitable type of transceiver as needed.
An SFP interface on networking hardware is a modular slot for a media-specific transceiver in order to connect a fiber-optic cable or sometimes a copper cable. SFP transceivers exist supporting synchronous optical networking, Gigabit Ethernet, Fibre Channel, PON, and other communications standards. At introduction, typical speeds were 1 Gbit/s for Ethernet SFPs and up to 4 Gbit/s for Fibre Channel SFP modules. In 2006, SFP+ specification brought speeds up to 10 Gbit/s and the SFP28 iteration is designed for speeds of 25 Gbit/s. The SFP replaced the larger GBIC in most applications, and has been referred to as a Mini-GBIC by some vendors.
A slightly larger sibling is the four-lane Quad Small Form-factor Pluggable. The additional lanes allow for speeds 4 times their corresponding SFP. In 2014, the QSFP28 variant was published allowing speeds up to 100 Gbit/s. In 2019, the closely related QSFP56 was standardized doubling the top speeds to 200 Gbit/s with products already selling from major vendors. There are inexpensive adapters allowing SFP transceivers to be placed in a QSFP port.
Both a SFP-DD, which allows for 100 Gbit/s over two lanes, as well as a QSFP-DD specifications, which allows for 400 Gbit/s over eight lanes, have been published. These use a formfactor which is backwardly compatible to their respective predecessors. An alternative competing solution, the OSFP transceiver is also intended for 400 Gbit/s fiber optic links between network equipment via 8 × 50 Gbit/s electrical data lanes. It is slightly larger version than the QSFP formfactor which is capable of handling larger power outputs. The OSFP standard was initially announced on November 15, 2016. Its proponents say a low cost adapter will allow for QSFP module compatibility.
SFP types
SFP transceivers are available with a variety of transmitter and receiver specifications, allowing users to select the appropriate transceiver for each link to provide the required optical reach over the available optical fiber type. Transceivers are also designated by their transmission speed. SFP modules are commonly available in several different categories.Name | Standard | Introduced | Status | Size | Backward compatible | MAC block to a PHY chip | Media | Connector | Max channels | Notes |
100 Mbit/s SFP | SFF INF-8074i | 2001-05-01 | 113.9 mm2 | none | MII | Fiber, copper | LC, RJ45 | 1 | ||
1 Gbit/s SFP | SFF INF-8074i | 2001-05-01 | 113.9 mm2 | 100 Mbit/s SFP* | SGMII | Fiber, copper | LC, RJ45 | 1 | ||
1 Gbit/s cSFP | 113.9 mm2 | Fiber | LC | 2 | ||||||
10 Gbit/s SFP+ | SFF SFF-8431 4.1 | 2009-07-06 | 113.9 mm2 | 1 Gbit/s SFP | XGMII | Fiber, copper, DAC | LC, RJ45 | 1 | ||
25 Gbit/s SFP28 | SFF SFF-8402 | 2014-09-13 | 113.9 mm2 | 10 Gbit/s SFP+ | Fiber, DAC | LC | 1 | |||
50 Gbit/s SFP56 | 113.9 mm2 | Fiber, DAC | LC | 1 | ||||||
4 Gbit/s QSFP | SFF INF-8438 | 2006-11-01 | 156 mm2 | none | GMII | 4 | ||||
40 Gbit/s QSFP+ | SFF SFF-8683 | 2012-04-01 | 156 mm2 | none | XGMII | Fiber. DAC | LC, MTP/MPO | 4 | CWDM | |
50 Gbit/s QSFP28 | SFF SFF-8665 | 2014-09-13 | 156 mm2 | QSFP+ | Fiber, DAC | LC | 2 | |||
100 Gbit/s QSFP28 | SFF SFF-8665 | 2014-09-13 | 156 mm2 | none | Fiber, DAC | LC, | 4 | CWDM | ||
200 Gbit/s QSFP56 | SFF SFF-8665 | 2015-06-29 | 156 mm2 | none | Fiber, DAC | LC, | 4 | |||
400 Gbit/s QSFP-DD | SFF INF-8628 | 2016-06-27 | 156 mm2 | QSFP+, QSFP28 | Fiber, DAC | LC, | 8 | CWDM |
100 Mbit/s SFP
- Multi-mode fiber, LC connector, with ' or ' color coding
- * SX850 nm, for a maximum of 550 m
- Multi-mode fiber, LC connector, with ' color coding
- * FS 1300 nm, for a distance up to 5 km.
- * LFX 1310 nm, for a distance up to 5 km.
- Single-mode fiber, LC connector, with ' color coding
- * LX1310 nm, for distances up to 10 km
- * EX1310 nm, for distances up to 40 km
- Single-mode fiber, LC connector, with ' color coding
- * ZX1550 nm, for distances up to 80 km,
- * EZX1550 nm, for distances up to 160 km
- Single-mode fiber, LC connector, Bi-Directional, with ' and color coding
- * BX 1550 nm/1310 nm, Single Fiber Bi-Directional 100 Mbit SFP Transceivers, paired as BX-U and BX-D for uplink and downlink respectively, also for distances up to 10 km. Variations of bidirectional SFPs are also manufactured which higher transmit power versions with link length capabilities up to 40 km.
- Copper twisted-pair cabling, 8P8C connector
- * 100BASE-TX for distances up to 100m.
1 Gbit/s SFP
- 1 Gbit/s multi-mode fiber, LC connector, with black or beige extraction lever
- * SX850 nm, for a maximum of 550 m at 1.25 Gbit/s. Other multi-mode SFP applications support even higher rates at shorter distances.
- 1.25 Gbit/s multi-mode fiber, LC connector, extraction lever colors not standardised
- * SX+/MX/LSX 1310 nm, for a distance up to 2 km. Not compatible with SX or 100BASE-FX. Based on LX but engineered to work with a multi-mode fiber using a standard multi-mode patch cable rather than a mode-conditioning cable commonly used to adapt LX to multi-mode.
- 1 to 2.5 Gbit/s single-mode fiber, LC connector, with blue extraction lever
- * LX1310 nm, for distances up to 10 km
- * EX1310 nm, for distances up to 40 km
- * ZX1550 nm, for distances up to 80 km, with green extraction lever
- * EZX1550 nm, for distances up to 160 km
- * BX 1490 nm/1310 nm, Single Fiber Bi-Directional Gigabit SFP Transceivers, paired as BX-U and BX-D for uplink and downlink respectively, also for distances up to 10 km. Variations of bidirectional SFPs are also manufactured which use 1550 nm in one direction, and higher transmit power versions with link length capabilities up to 80 km.
- * 1550 nm 40 km, 80 km, 120 km
- * SFSWsingle-fiber single-wavelength transceivers, for bi-directional traffic on a single fiber. Coupled with CWDM, these double the traffic density of fiber links.
- * Coarse wavelength-division multiplexing and dense wavelength-division multiplexing transceivers at various wavelengths achieving various maximum distances. CWDM and DWDM transceivers usually support link distances of 40 km, 80 km and 120 km.
- 1 Gbit/s for copper twisted-pair cabling, 8P8C connector
- * 1000BASE-Tthese modules incorporate significant interface circuitry for Physical Coding Sublayer recoding and can be used only for gigabit Ethernet because of the specific line code. They are not compatible with Fibre Channel or SONET. Unlike non-SFP, copper 1000BASE-T ports integrated into most routers and switches, 1000BASE-T SFPs usually cannot operate at 100BASE-TX speeds.
- 100 Mbit/s copper and opticalsome vendors have shipped 100 Mbit/s limited SFPs for fiber-to-the-home applications and drop-in replacement of legacy 100BASE-FX circuits. These are relatively uncommon and can be easily confused with 100 Mbit/s SFPs.
- Although it is not mentioned in any official specification document the maximum data rate of the original SFP standard is 5 Gbit/s. This was eventually used by both 4GFC Fibre Channel and the DDR Infiniband especially in its four lane QSFP form.
- In recent years, SFP transceivers have been created that will allow 2.5 Gbit/s and 5 Gbit/s Ethernet speeds with SFPs with 2.5GBASE-T and 5GBASE-T.
10 Gbit/s SFP+
SFP+ also introduces direct attach for connecting two SFP+ ports without dedicated transceivers. Direct attach cables exist in passive, active, and active optical variants.
10 Gbit/s SFP+ modules are exactly the same dimensions as regular SFPs, allowing the equipment manufacturer to re-use existing physical designs for 24 and 48-port switches and modular line cards. In comparison to earlier XENPAK or XFP modules, SFP+ modules leave more circuitry to be implemented on the host board instead of inside the module. Through the use of an active electronic adapter, SFP+ modules may be used in older equipment with XENPAK ports and X2 ports.
SFP+ modules can be described as limiting or linear types; this describes the functionality of the inbuilt electronics. Limiting SFP+ modules include a signal amplifier to re-shape the received signal whereas linear ones do not. Linear modules are mainly used with the low bandwidth standards such as 10GBASE-LRM; otherwise, limiting modules are preferred.
25 Gbit/s SFP28
SFP28 is a 25 Gbit/s interface which evolved from the 100 Gigabit Ethernet interface which is typically implemented with 4 by 25 Gbit/s data lanes. Identical in mechanical dimensions to SFP and SFP+, SFP28 implements one 28 Gbit/s lane accommodating 25 Gbit/s of data with encoding overhead.SFP28 modules exist supporting single- or multi-mode fiber connections, active optical cable and direct attach copper.
cSFP
The compact small form-factor pluggable is a version of SFP with the same mechanical form factor allowing two independent bidirectional channels per port. It is used primarily to increase port density and decrease fiber usage per port.SFP-DD
The small form-factor pluggable double density multi source agreement is a new standard for doubling port density. According to the SFD-DD MSA website: "Network equipment based on the SFP-DD will support legacy SFP modules and cables, and new double density products."QSFP types
Quad Small Form-factor Pluggable transceivers are available with a variety of transmitter and receiver types, allowing users to select the appropriate transceiver for each link to provide the required optical reach over multi-mode or single-mode fiber.4 Gbit/s QSFP
40 Gbit/s QSFP+
50 Gbit/s QSFP14
100 Gbit/s QSFP28
200 Gbit/s QSFP56
Fanout
Switch and router manufacturers implementing QSFP+ ports in their products frequently allow for the use of a single QSFP+ port as four independent 10 gigabit ethernet connections, greatly increasing port density. For example, a typical 24-port QSFP+ 1U switch would be able to service 96x10GbE connections. There also exist fanout cables to adapt a single QSFP28 port to four independent 25 gigabit ethernet SFP28 ports as well as cables to adapt a single QSFP56 port to four independent 50 gigabit ethernet SFP56 ports.Applications
SFP sockets are found in Ethernet switches, routers, firewalls and network interface cards. They are used in Fibre Channel host adapters and storage equipment. Because of their low cost, low profile, and ability to provide a connection to different types of optical fiber, SFP provides such equipment with enhanced flexibility.Standardization
The SFP transceiver is not standardized by any official standards body, but rather is specified by a multi-source agreement among competing manufacturers. The SFP was designed after the GBIC interface, and allows greater port density than the GBIC, which is why SFP is also known as mini-GBIC.However, as a practical matter, some networking equipment manufacturers engage in vendor lock-in practices whereby they deliberately break compatibility with "generic" SFPs by adding a check in the device's firmware that will enable only the vendor's own modules. Third-party SFP manufacturers have introduced SFPs with EEPROMs which may be programmed to match any vendor ID.
Color coding of SFP
Color coding of SFP
Color coding of CWDM SFP {{cite web |title=Do You Know the CWDM Transceiver Color Code? Optcore.net |url=https://www.optcore.net/do-you-know-cwdm-transceiver-color-code/ |accessdate=28 March 2020}}
Color | Standard | wavelength | Notes |
1270 nm | |||
1290 nm | |||
1310 nm | |||
1330 nm | |||
1350 nm | |||
1370 nm | |||
1390 nm | |||
1410 nm | |||
1430 nm | |||
1450 nm | |||
1470 nm | |||
1490 nm | |||
1510 nm | |||
1530 nm | |||
1550 nm | |||
1570 nm | |||
1590 nm | |||
1610 nm |
Color coding of BiDi SFP
Name | Standard | Side A Color TX | Side A wavelength TX | Side B Color TX | Side B wavelength TX | Notes |
1000BASE-BX | 1310 nm | 1490 nm | ||||
1000BASE-BX | 1310 nm | 1550 nm | ||||
10GBASE-BX 25GBASE-BX | 1270 nm | 1330 nm | ||||
10GBASE-BX | 1490 nm | 1550 nm |
Color coding of QSFP
Color | Standard | wavelength | Multiplexing | Notes |
INF-8438 | 850 nm | No | ||
INF-8438 | 1310 nm | No | ||
INF-8438 | 1550 nm | No |