A smart device is an electronic device, generally connected to other devices or networks via different wireless protocols such as Bluetooth, Zigbee, NFC, Wi-Fi, LiFi, 3G, etc., that can operate to some extent interactively and autonomously. Several notable types of smart devices are smartphones, smart cars, smart thermostats, smart doorbells, smart locks, smart refrigerators, phablets and tablets, smartwatches, smart bands, smart key chains, smart speakers and others. The term can also refer to a device that exhibits some properties of ubiquitous computing, including—although not necessarily—artificial intelligence. Smart devices can be designed to support a variety of form factors, a range of properties pertaining to ubiquitous computing and to be used in three main system environments: physical world, human-centered environments and distributed computing environments.
Form factors
In 1991 Mark Weiser proposed two basic forms for ubiquitous system devices: tabs, pads and boards.
Boards: meter sized interactive display devices, e.g., horizontal surface computers and vertical smart boards.
These three forms proposed by Weiser are characterised by being macro-sized, having a planar form and by incorporating visual output displays. These were also envisioned more as information appliances. If we relax each of these three characteristics we can expand this range into a much more diverse and potentially more useful range of ubiquitous computing devices. Hence, three additional forms for ubiquitous systems have been proposed:
It is proposed that there are two additional core types of properties for UbiCom systems:
Devices can operate to some extent autonomously, i.e., without human intervention, be self-governed.
Devices can handle a multiplicity of dynamic actions and interactions, governed by intelligent decision-making and organisational interaction. This may entail some form of artificial intelligence in order to:
* handle incomplete and non-deterministic interactions
* cooperation and competition between members of organisations
* richer interaction through sharing of context, semantics and goals etc.
However, it is hard to fix a closed set of properties that define all ubiquitous computing devices because of the sheer range and variety of ubiquitous computing research and applications. Rather than to propose a single definition for ubiquitous computing, a taxonomy of properties for ubiquitous computing has been proposed, from which different kinds or flavours of ubiquitous systems and applications can be composed and described.
Environments
The term Smart Device Environments has two meanings. First, it can refer to a greater variety of device environments. Three different kinds of environments for devices can be differentiated:
Virtual computing environments that enable smart devices to access pertinent services anywhere and anytime.
Physical environments that may be embedded with a variety of smart devices of different types including tags, sensors and controllers. These can have different form factors ranging from nano to micro to macro sized.
Humans environments: humans, either individually or collectively, inherently form a smart environment for devices. However, humans may themselves be accompanied by smart devices such as mobile phones, use surface-mounted devices and contain embedded devices.
Second, the term Smart Device Environments can also refer to the concept of a smart environment which focuses more specifically on the physical environment of the device. The physical environment is smart because it is embedded or scattered with smart devices that can sense and control part of it.
Versus information appliances
Although smart devices partially overlap in definition with specific types of appliance such as information appliances, smart devices are characterised and differ in several key ways. First, smart devices in general can take a much wider range of form-factors than appliances. Second, smart devices support the ubiquitous computing properties. Third information appliances focus on remote interaction with computing environments that tend to be personalised whereas smart devices can also focus heavily on impersonal physical world interaction. Four, the term appliance generally implies that devices are task specific and under the control of some embedded system or application specific operating system, whereas smart devices may support multiple tasks, e.g., a mobile phone can act as a phone but also as a games console, music player, camera, etc.The smart devices these generation have the ability to control other smart devices, not necessarily they have to be in the same network or in a particular range they can connect and access an authorized smart device across the globe which has an active Internet connection.smart devices are used for auto pilot features in driving