Soliton
In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.
The soliton phenomenon was first described in 1834 by John Scott Russell who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation".
Definition
A single, consensus definition of a soliton is difficult to find. ascribe three properties to solitons:- They are of permanent form;
- They are localized within a region;
- They can interact with other solitons, and emerge from the collision unchanged, except for a phase shift.
Explanation
and nonlinearity can interact to produce permanent and localized wave forms. Consider a pulse of light traveling in glass. This pulse can be thought of as consisting of light of several different frequencies. Since glass shows dispersion, these different frequencies travel at different speeds and the shape of the pulse therefore changes over time. However, also the nonlinear Kerr effect occurs; the refractive index of a material at a given frequency depends on the light's amplitude or strength. If the pulse has just the right shape, the Kerr effect exactly cancels the dispersion effect, and the pulse's shape does not change over time, thus is a soliton. See soliton for a more detailed description.Many exactly solvable models have soliton solutions, including the Korteweg–de Vries equation, the nonlinear Schrödinger equation, the coupled nonlinear Schrödinger equation, and the sine-Gordon equation. The soliton solutions are typically obtained by means of the inverse scattering transform, and owe their stability to the integrability of the field equations. The mathematical theory of these equations is a broad and very active field of mathematical research.
Some types of tidal bore, a wave phenomenon of a few rivers including the River Severn, are 'undular': a wavefront followed by a train of solitons. Other solitons occur as the undersea internal waves, initiated by seabed topography, that propagate on the oceanic pycnocline. Atmospheric solitons also exist, such as the morning glory cloud of the Gulf of Carpentaria, where pressure solitons traveling in a temperature inversion layer produce vast linear roll clouds. The recent and not widely accepted soliton model in neuroscience proposes to explain the signal conduction within neurons as pressure solitons.
A topological soliton, also called a topological defect, is any solution of a set of partial differential equations that is stable against decay to the "trivial solution". Soliton stability is due to topological constraints, rather than integrability of the field equations. The constraints arise almost always because the differential equations must obey a set of boundary conditions, and the boundary has a nontrivial homotopy group, preserved by the differential equations. Thus, the differential equation solutions can be classified into homotopy classes.
No continuous transformation maps a solution in one homotopy class to another. The solutions are truly distinct, and maintain their integrity, even in the face of extremely powerful forces. Examples of topological solitons include the screw dislocation in a crystalline lattice, the Dirac string and the magnetic monopole in electromagnetism, the Skyrmion and the Wess–Zumino–Witten model in quantum field theory, the magnetic skyrmion in condensed matter physics, and cosmic strings and domain walls in cosmology.
History
In 1834, John Scott Russell describes his wave of translation. The discovery is described here in Scott Russell's own words:Scott Russell spent some time making practical and theoretical investigations of these waves. He built wave tanks at his home and noticed some key properties:
- The waves are stable, and can travel over very large distances
- The speed depends on the size of the wave, and its width on the depth of water.
- Unlike normal waves they will never merge – so a small wave is overtaken by a large one, rather than the two combining.
- If a wave is too big for the depth of water, it splits into two, one big and one small.
– or BBM equation, a model equation for long surface gravity waves. The wave heights of the solitary waves are 1.2 and 0.6, respectively, and their velocities are 1.4 and 1.2.
The upper graph is for a frame of reference moving with the average velocity of the solitary waves.
The lower graph shows the oscillatory tail produced by the interaction. Thus, the solitary wave solutions of the BBM equation are not solitons.
In 1965 Norman Zabusky of Bell Labs and Martin Kruskal of Princeton University first demonstrated soliton behavior in media subject to the Korteweg–de Vries equation in a computational investigation using a finite difference approach. They also showed how this behavior explained the puzzling earlier work of Fermi, Pasta, Ulam, and Tsingou.
In 1967, Gardner, Greene, Kruskal and Miura discovered an inverse scattering transform enabling analytical solution of the KdV equation. The work of Peter Lax on Lax pairs and the Lax equation has since extended this to solution of many related soliton-generating systems.
Note that solitons are, by definition, unaltered in shape and speed by a collision with other solitons. So solitary waves on a water surface are near-solitons, but not exactly – after the interaction of two solitary waves, they have changed a bit in amplitude and an oscillatory residual is left behind.
Solitons are also studied in quantum mechanics, thanks to the fact that they could provide a new foundation of it through de Broglie's unfinished program, known as "Double solution theory" or "Nonlinear wave mechanics". This theory, developed by de Broglie in 1927 and revived in the 1950s, is the natural continuation of his ideas developed between 1923 and 1926, which extended the wave-particle duality introduced by Albert Einstein for the light quanta, to all the particles of matter. In 2019, researchers from Tel-Aviv university measured an accelerating surface gravity water wave soliton by using an external hydrodynamic linear potential. They also managed to excite ballistic solitons and measure their corresponding phases. The members of the team associated with the experiment were Georgi Gary Rozenman, Ady Arie and Lev Shemer
In fiber optics
Much experimentation has been done using solitons in fiber optics applications. Solitons in a fiber optic system are described by the Manakov equations.Solitons' inherent stability make long-distance transmission possible without the use of repeaters, and could potentially double transmission capacity as well.
Year | Discovery |
1973 | Akira Hasegawa of AT&T Bell Labs was the first to suggest that solitons could exist in optical fibers, due to a balance between self-phase modulation and anomalous dispersion. Also in 1973 Robin Bullough made the first mathematical report of the existence of optical solitons. He also proposed the idea of a soliton-based transmission system to increase performance of optical telecommunications. |
1987 | – from the Universities of Brussels and Limoges – made the first experimental observation of the propagation of a dark soliton, in an optical fiber. |
1988 | Linn Mollenauer and his team transmitted soliton pulses over 4,000 kilometers using a phenomenon called the Raman effect, named after Sir C. V. Raman who first described it in the 1920s, to provide optical gain in the fiber. |
1991 | A Bell Labs research team transmitted solitons error-free at 2.5 gigabits per second over more than 14,000 kilometers, using erbium optical fiber amplifiers. Pump lasers, coupled to the optical amplifiers, activate the erbium, which energizes the light pulses. |
1998 | Thierry Georges and his team at France Telecom R&D Center, combining optical solitons of different wavelengths, demonstrated a composite data transmission of 1 terabit per second, not to be confused with Terabit-Ethernet. The above impressive experiments have not translated to actual commercial soliton system deployments however, in either terrestrial or submarine systems, chiefly due to the Gordon–Haus jitter. The GH jitter requires sophisticated, expensive compensatory solutions that ultimately makes dense wavelength-division multiplexing soliton transmission in the field unattractive, compared to the conventional non-return-to-zero/return-to-zero paradigm. Further, the likely future adoption of the more spectrally efficient phase-shift-keyed/QAM formats makes soliton transmission even less viable, due to the Gordon–Mollenauer effect. Consequently, the long-haul fiberoptic transmission soliton has remained a laboratory curiosity. |
2000 | Cundiff predicted the existence of a vector soliton in a birefringence fiber cavity passively mode locking through a semiconductor saturable absorber mirror. The polarization state of such a vector soliton could either be rotating or locked depending on the cavity parameters. |
2008 | D. Y. Tang et al. observed a novel form of higher-order vector soliton from the perspectives of experiments and numerical simulations. Different types of vector solitons and the polarization state of vector solitons have been investigated by his group. |
In biology
Solitons may occur in proteins and DNA. Solitons are related to the low-frequency collective motion in proteins and DNA.A recently developed model in neuroscience proposes that signals, in the form of density waves, are conducted within neurons in the form of solitons.
In magnets
In magnets, there also exist different types of solitons and other nonlinear waves. These magnetic solitons are an exact solution of classical nonlinear differential equations — magnetic equations, e.g. the Landau–Lifshitz equation, continuum Heisenberg model, Ishimori equation, nonlinear Schrödinger equation and others.In nuclear physics
Atomic nuclei may exhibit solitonic behavior. Here the whole nuclear wave function is predicted to exist as a soliton under certain conditions of temperature and energy. Such conditions are suggested to exist in the cores of some stars in which the nuclei would not react but pass through each other unchanged, retaining their soliton waves through a collision between nuclei.The Skyrme Model is a model of nuclei in which each nucleus is considered to be a topologically stable soliton solution of a field theory with conserved baryon number.
Bions
The bound state of two solitons is known as a bion, or in systems where the bound state periodically oscillates, a breather.In field theory bion usually refers to the solution of the Born–Infeld model. The name appears to have been coined by G. W. Gibbons in order to distinguish this solution from the conventional soliton, understood as a regular, finite-energy solution of a differential equation describing some physical system. The word regular means a smooth solution carrying no sources at all. However, the solution of the Born–Infeld model still carries a source in the form of a Dirac-delta function at the origin. As a consequence it displays a singularity in this point. In some physical contexts this feature can be important, which motivated the introduction of a special name for this class of solitons.
On the other hand, when gravity is added the corresponding solution is called EBIon, where "E" stands for Einstein.