Sombrero Galaxy


The Sombrero Galaxy is a lenticular galaxy in the constellation borders of Virgo and Corvus, being about from Earth. The galaxy has a diameter of approximately, 30% the size of the Milky Way. It has a bright nucleus, an unusually large central bulge, and a prominent dust lane in its inclined disk. The dark dust lane and the bulge give this galaxy the appearance of a sombrero hat. Astronomers initially thought that the halo was small and light, indicative of a spiral galaxy, but the Spitzer Space Telescope found that the dust ring around the Sombrero Galaxy is larger and more massive than previously thought, indicative of a giant elliptical galaxy. The galaxy has an apparent magnitude of +8.0, making it easily visible with amateur telescopes, and it is considered by some authors to be the galaxy with the highest absolute magnitude within a radius of 10 megaparsecs of the Milky Way. Its large bulge, its central supermassive black hole, and its dust lane all attract the attention of professional astronomers.

Observation history

Discovery

The Sombrero Galaxy was discovered on May 11, 1781 by Pierre Méchain, who described the object in a May 1783 letter to J. Bernoulli that was later published in the Berliner Astronomisches Jahrbuch. Charles Messier made a hand-written note about this and five other objects to his personal list of objects now known as the Messier Catalogue, but it was not "officially" included until 1921. William Herschel independently discovered the object in 1784 and additionally noted the presence of a "dark stratum" in the galaxy's disc, what is now called a dust lane. Later astronomers were able to connect Méchain's and Herschel's observations.

Designation as a Messier object

In 1921, Camille Flammarion found Messier's personal list of the Messier objects including the hand-written notes about the Sombrero Galaxy. This was identified with object 4594 in the New General Catalogue, and Flammarion declared that it should be included in the Messier Catalogue. Since this time, the Sombrero Galaxy has been known as M104.

Dust ring

As noted above, this galaxy's most striking feature is the dust lane that crosses in front of the bulge of the galaxy. This dust lane is actually a symmetrical ring that encloses the bulge of the galaxy. Most of the cold atomic hydrogen gas and the dust lie within this ring. The ring might also contain most of the Sombrero Galaxy's cold molecular gas, although this is an inference based on observations with low resolution and weak detections. Additional observations are needed to confirm that the Sombrero galaxy's molecular gas is constrained to the ring. Based on infrared spectroscopy, the dust ring is the primary site of star formation within this galaxy.

Nucleus

The nucleus of the Sombrero Galaxy is classified as a low-ionization nuclear emission-line region. These are nuclear regions where ionized gas is present, but the ions are only weakly ionized. The source of energy for ionizing the gas in LINERs has been debated extensively. Some LINER nuclei may be powered by hot, young stars found in star formation regions, whereas other LINER nuclei may be powered by active galactic nuclei. Infrared spectroscopy observations have demonstrated that the nucleus of the Sombrero Galaxy is probably devoid of any significant star formation activity. However, a supermassive black hole has been identified in the nucleus, so this active galactic nucleus is probably the energy source that weakly ionizes the gas in the Sombrero Galaxy.

Central supermassive black hole

In the 1990s, a research group led by John Kormendy demonstrated that a supermassive black hole is present within the Sombrero Galaxy. Using spectroscopy data from both the CFHT and the Hubble Space Telescope, the group showed that the speed of revolution of the stars within the center of the galaxy could not be maintained unless a mass 1 billion times the mass of the Sun, or, is present in the center. This is among the most massive black holes measured in any nearby galaxies.

Synchrotron radiation

At radio and X-ray wavelengths, the nucleus is a strong source of synchrotron radiation. Synchrotron radiation is produced when high-velocity electrons oscillate as they pass through regions with strong magnetic fields. This emission is quite common for active galactic nuclei. Although radio synchrotron radiation may vary over time for some active galactic nuclei, the luminosity of the radio emission from the Sombrero Galaxy varies only 10–20%.

Unidentified terahertz radiation

In 2006, two groups published measurements of the terahertz radiation from the nucleus of the Sombrero Galaxy at a wavelength of. This terahertz radiation was found not to originate from the thermal emission from dust, synchrotron radiation, bremsstrahlung emission from hot gas, or molecular gas. The source of the terahertz radiation remains unidentified.

Globular clusters

The Sombrero Galaxy has a relatively large number of globular clusters. Observational studies of globular clusters in the Sombrero Galaxy have produced estimates of the population in the range of 1,200 to 2,000. The ratio of the number of globular clusters to the total luminosity of the galaxy is high compared to the Milky Way and similar galaxies with small bulges, but the ratio is comparable to other galaxies with large bulges. These results have been repeatedly used to demonstrate that the number of globular clusters in galaxies is thought to be related to the size of the galaxies' bulges. The surface density of the globular clusters generally follows the light profile of the bulge except for near the center of the galaxy.

Distance and brightness

At least two methods have been used to measure the distance to the Sombrero Galaxy.
The first method relies on comparing the measured fluxes from planetary nebulae in the Sombrero Galaxy to the known Luminosity of planetary nebulae in the Milky Way. This method gave the distance to the Sombrero Galaxy as.
The other method used is the surface brightness fluctuations method. This method uses the grainy appearance of the galaxy's bulge to estimate the distance to it. Nearby galaxy bulges will appear very grainy, while more distant bulges will appear smooth. Early measurements using this technique gave distances of. Later, after some refinement of the technique, a distance of was measured. This was even further refined in 2003 to be.
The average distance measured through these two techniques is.
The absolute magnitude of the Sombrero Galaxy is estimated to be −21.9 at , that as stated above makes it the brightest galaxy within a radius of around the Milky Way.
A report from 2016 used the Hubble Space Telescope to measure the distance to M104 based on the tip of the red-giant branch method yielding 9.55 ± 0.13 ± 0.31 Mpc.

Nearby galaxies and galaxy group information

The Sombrero Galaxy lies within a complex, filament-like cloud of galaxies that extends to the south of the Virgo Cluster. However, it is unclear whether the Sombrero Galaxy is part of a formal galaxy group. Hierarchical methods for identifying groups, which determine group membership by considering whether individual galaxies belong to a larger aggregate of galaxies, typically produce results showing that the Sombrero Galaxy is part of a group that includes NGC 4487, NGC 4504, NGC 4802, UGCA 289, and possibly a few other galaxies. However, results that rely on the percolation method, which links individual galaxies together to determine group membership, indicate that either the Sombrero Galaxy is not in a group or that it may only be part of a galaxy pair with UGCA 287.
Besides that, M104 is also accompanied by an ultracompact dwarf galaxy, that was discovered in 2009. This object has an absolute magnitude of −12.3, an effective radius of just, and a mass of 3.3*

Amateur astronomy

The Sombrero Galaxy is located 11.5° west of Spica and 5.5° northeast of Eta Corvi. Although the galaxy is visible with 7×35 binoculars or a amateur telescope, an telescope is needed to distinguish the bulge from the disk, and a 10- or 12-inch telescope is needed to see the dark dust lane.