Spoileron


In aeronautics, spoilerons are spoilers that can be used asymmetrically as flight control surfaces to provide roll control. They are used in situations where aileron action would produce excessive wing twist on a very flexible wing or if wide-span flaps prevent adequate aileron roll control.

Operation

Spoilerons roll an aircraft by reducing the lift of the downward-going wing. Unlike ailerons, spoilers do not increase the lift of the upward-going wing. A raised spoileron also increases the drag on the wing where it is deployed, causing the aircraft to yaw. Spoilerons can be used to assist ailerons or to replace them entirely, as in the B-52G which required an extra spoiler segment in place of ailerons present on other B-52 models.

Usage

An early use of spoilers augmenting small ailerons, known as guide ailerons, was in the Northrop P-61 Black Widow night fighter. The spoilers allowed wider-span flaps for a lower landing speed.
The B-52 Stratofortress also had spoilers augmenting small ailerons, known as feeler ailerons. These ailerons provided control forces to the pilot. The B-52G has no ailerons. The spoilers, situated inboard and forward of the trailing edge, are used for lateral control at high speeds to prevent excessive wing twist.
The Mitsubishi Mu-2 has double-slotted flaps that take-up the full length of the wing, leaving no room for ailerons. Like the B-52 it has spoilerons near the center of the wing.
The Mitsubishi Diamond Jet, Beechjet, and Hawker 400 family of business aircraft incorporate full length spoilerons that also double as speed spoilers during flight and landing.
Another aircraft with full-length double-slotted flaps was the Wren 460. To go with large aileron deflections at low speeds it had a set of 5 feathering drag plates ahead of each aileron to overcome adverse aileron yaw and decrease lift on the low wing.
Boeing's line of jet airliners and Tupolev Tu-154 have fast-acting spoilers. They double as spoilerons that assist the ailerons when the pilot commands a high roll rate. These can be observed in operation when the pilot is fighting gusting crosswinds while landing.

Research

Several technology research and development efforts exist to integrate the functions of aircraft flight control systems such as ailerons, elevators, elevons, flaps, flaperons, and spoilerons into wings to perform the aerodynamic purpose with the goals of reducing mass, cost, drag, inertia, complexity, and radar cross section for stealth. Expected applications include many unmanned aerial vehicles and 6th generation fighter aircraft. Two promising approaches are: flexible wings; and fluidics.

Flexible wings

In flexible wings, much or all of a wing surface can change shape in flight to deflect air flow. The X-53 Active Aeroelastic Wing is a NASA effort. The Adaptive Compliant Wing is a military and commercial effort.

Fluidics

In fluidics, forces in vehicles occur via circulation control, in which larger more complex mechanical parts are replaced by smaller simpler fluidic systems where larger forces in fluids are diverted by smaller jets or flows of fluid intermittently, to change the direction of vehicles. In this use, fluidics promises lower mass, costs, and very low inertia and response times, and simplicity.