Stein's unbiased risk estimate


In statistics, Stein's unbiased risk estimate is an unbiased estimator of the mean-squared error of "a nearly arbitrary, nonlinear biased estimator." In other words, it provides an indication of the accuracy of a given estimator. This is important since the true mean-squared error of an estimator is a function of the unknown parameter to be estimated, and thus cannot be determined exactly.
The technique is named after its discoverer, Charles Stein.

Formal statement

Let be an unknown parameter and let be a measurement vector whose components are independent and distributed normally with mean and variance. Suppose is an estimator of from, and can be written, where is weakly differentiable. Then, Stein's unbiased risk estimate is given by
where is the th component of the function, and is the Euclidean norm.
The importance of SURE is that it is an unbiased estimate of the mean-squared error of, i.e.
with
Thus, minimizing SURE can act as a surrogate for minimizing the MSE. Note that there is no dependence on the unknown parameter in the expression for SURE above. Thus, it can be manipulated without knowledge of.

Proof

We wish to show that
We start by expanding the MSE as
Now we use integration by parts to rewrite the last term:
Substituting this into the expression for the MSE, we arrive at

Applications

A standard application of SURE is to choose a parametric form for an estimator, and then optimize the values of the parameters to minimize the risk estimate. This technique has been applied in several settings. For example, a variant of the James–Stein estimator can be derived by finding the optimal shrinkage estimator. The technique has also been used by Donoho and Johnstone to determine the optimal shrinkage factor in a wavelet denoising setting.