The Stracheymethod for magic squares is an algorithm for generating magic squares of singly even order 4k + 2. An example of magic square of order 6 constructed with the Strachey method: Strachey's method of construction of singly even magic square of order n = 4k + 2. 1.Divide the grid into 4 quarters each having n2/4 cells and name them crosswise thus
A
C
D
B
2. Using the Siamese method complete the individual magic squares of odd order 2k + 1 in subsquares A, B, C, D, first filling up the sub-square A with the numbers 1 to n2/4, then the sub-square B with the numbersn2/4 + 1 to 2n2/4,then the sub-square C with the numbers 2n2/4 + 1 to 3n2/4, then the sub-square D with the numbers 3n2/4 + 1 to n2. As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarterAcontains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.
17
24
1
8
15
67
74
51
58
65
23
5
7
14
16
73
55
57
64
66
4
6
13
20
22
54
56
63
70
72
10
12
19
21
3
60
62
69
71
53
11
18
25
2
9
61
68
75
52
59
92
99
76
83
90
42
49
26
33
40
98
80
82
89
91
48
30
32
39
41
79
81
88
95
97
29
31
38
45
47
85
87
94
96
78
35
37
44
46
28
86
93
100
77
84
36
43
50
27
34
3. Exchange the leftmost k columns in sub-square A with the corresponding columns of sub-square D.
92
99
1
8
15
67
74
51
58
65
98
80
7
14
16
73
55
57
64
66
79
81
13
20
22
54
56
63
70
72
85
87
19
21
3
60
62
69
71
53
86
93
25
2
9
61
68
75
52
59
17
24
76
83
90
42
49
26
33
40
23
5
82
89
91
48
30
32
39
41
4
6
88
95
97
29
31
38
45
47
10
12
94
96
78
35
37
44
46
28
11
18
100
77
84
36
43
50
27
34
4. Exchange the rightmost k - 1 columns in sub-square C with the corresponding columns of sub-square B.
92
99
1
8
15
67
74
51
58
40
98
80
7
14
16
73
55
57
64
41
79
81
13
20
22
54
56
63
70
47
85
87
19
21
3
60
62
69
71
28
86
93
25
2
9
61
68
75
52
34
17
24
76
83
90
42
49
26
33
65
23
5
82
89
91
48
30
32
39
66
4
6
88
95
97
29
31
38
45
72
10
12
94
96
78
35
37
44
46
53
11
18
100
77
84
36
43
50
27
59
5. Exchange the middlecell of the leftmost column of sub-square A with the corresponding cell of sub-square D. Exchange the central cell in sub-square A with the corresponding cell of sub-square D.