Stratospheric aerosol injection


The ability of stratospheric aerosols to create a global dimming effect has made them a possible candidate for use in solar radiation management climate engineering projects to limit the effect and impact of climate change due to rising levels of greenhouse gases. Delivery of precursor sulfide gases such as sulfuric acid, hydrogen sulfide or sulfur dioxide by artillery, aircraft and balloons has been proposed. Non-sulfide substances such as calcite have also been proposed given their benefits to the ozone layer. It appears that this could counter most changes to temperature and precipitation, take effect rapidly, have low direct implementation costs, and be reversible in its direct climatic effects. However, it would do so imperfectly and other effects are possible.
One study calculated the impact of injecting sulfate particles, or aerosols, every one to four years into the stratosphere in amounts equal to those lofted by the volcanic eruption of Mount Pinatubo in 1991, but did not address the many technical and political challenges involved in potential solar radiation management efforts. If found to be economically, environmentally and technologically viable, such injections could provide a "grace period" of up to 20 years by which time atmospheric greenhouse gas pollution would need to be reduced to safe levels.
It has been suggested that the direct delivery of precursors could be achieved using sulfide gases such as dimethyl sulfide, sulfur dioxide, carbonyl sulfide, or hydrogen sulfide. These compounds would be delivered using artillery, aircraft or balloons, and result in the formation of compounds with the sulfate anion SO42−.
According to estimates, "one kilogram of well placed sulfur in the stratosphere would roughly offset the warming effect of several hundred thousand kilograms of carbon dioxide."

Arguments for the technique

The arguments in favour of this approach in comparison to other possible means of solar radiation management are:
It is uncertain how effective any solar radiation management technique would be, due to the difficulties modeling their impacts and the complex nature of the global climate system. Certain efficacy issues are specific to stratospheric aerosols.
Climate engineering and solar radiation management in general are controversial, and pose various problems and risks. However, certain problems are specific to, or more pronounced with stratospheric sulfide injection. The injection of other aerosols that may be safer such as calcite has therefore been proposed.
The injection of non-sulfide aerosols like calcite would also have a cooling effect while counteracting ozone depletion and would be expected to reduce other side effects.
Regardless of worry, such atmospheric effects are similar to medication in that amount is key, as in dose makes the poison and/or cure, furthermore, random non-artificial injections will occur anyway.

Aerosol formation

Primary aerosol formation, also known as homogeneous aerosol formation, results when gaseous combines with oxygen and water to form aqueous sulfuric acid. This acidic liquid solution is in the form of a vapor and condenses onto particles of solid matter, either meteoritic in origin or from dust carried from the surface to the stratosphere. Secondary or heterogeneous aerosol formation occurs when H2SO4 vapor condenses onto existing aerosol particles. Existing aerosol particles or droplets also run into each other, creating larger particles or droplets in a process known as coagulation. Warmer atmospheric temperatures also lead to larger particles. These larger particles would be less effective at scattering sunlight because the peak light scattering is achieved by particles with a diameter of 0.3 μm.

Methods

Various techniques have been proposed for delivering the aerosol precursor gases. The required altitude to enter the stratosphere is the height of the tropopause, which varies from 11 kilometres at the poles to 17 kilometres at the equator.
Precursor gases such as sulfur dioxide and hydrogen sulfide have been considered. Use of gaseous sulfuric acid appears to reduce the problem of aerosol growth. Materials such as photophoretic particles, titanium dioxide, and diamond are also under consideration.

Injection system

The latitude and distribution of injection locations has been discussed by various authors. Whilst a near-equatorial injection regime will allow particles to enter the rising leg of the Brewer-Dobson circulation, several studies have concluded that a broader, and higher-latitude, injection regime will reduce injection mass flow rates and/or yield climatic benefits. Concentration of precursor injection in a single longitude appears to be beneficial, with condensation onto existing particles reduced, giving better control of the size distribution of aerosols resulting. The long residence time of carbon dioxide in the atmosphere may require a millennium-timescale commitment to SRM if aggressive emissions abatement is not pursued simultaneously.

Outdoors research

Almost all work to date on stratospheric sulfate injection has been limited to modelling and laboratory work. A Russian team tested aerosol formation in the lower troposphere using helicopters. The Stratospheric Particle Injection for Climate Engineering project planned on a limited field test in order to evaluate a potential delivery system, but this component of the project was canceled. In 2015, a group based at Harvard University has described a potential field experiment to test the possible damage to stratospheric ozone from stratospheric sulfate injection, and a first test is scheduled for 2019, taking place in the Tucson desert.

Governance

Most of the existing governance of stratospheric sulfate aerosols is from that which is applicable to solar radiation management more broadly. However, some existing legal instruments would be relevant to stratospheric sulfate aerosols specifically. At the international level, the Convention on Long-Range Transboundary Air Pollution obligates those countries which have ratified it to reduce their emissions of particular transboundary air pollutants. Notably, both solar radiation management and climate change could satisfy the definition of "air pollution" which the signatories commit to reduce, depending on their actual negative effects. Commitments to specific values of the pollutants, including sulfates, are made through protocols to the CLRTAP Convention. Full implementation or large scale climate response field tests of stratospheric sulfate aerosols could cause countries to exceed their limits. However, because stratospheric injections would be spread across the globe instead of concentrated in a few nearby countries, and could lead to net reductions in the "air pollution" which the CLRTAP Convention is to reduce, it is uncertain how the convention's Implementation Committee and Executive Body would respond to such event.
The stratospheric injection of sulfate aerosols would cause the Vienna Convention for the Protection of the Ozone Layer to be applicable, due to their possible deleterious effects on stratospheric ozone. That treaty generally obligates its Parties to enact policies to control activities which "have or are likely to have adverse effects resulting from modification or likely modification of the ozone layer." The Montreal Protocol to the Vienna Convention prohibits the production of certain ozone depleting substances, via phase outs. Sulfates are presently not among the prohibited substances.
In the United States, the Clean Air Act might give the United States Environmental Protection Agency authority to regulate stratospheric sulfate aerosols.