Stream processing


Stream processing is a computer programming paradigm, equivalent to dataflow programming, event stream processing, and reactive programming, that allows some applications to more easily exploit a limited form of parallel processing. Such applications can use multiple computational units, such as the floating point unit on a graphics processing unit or field-programmable gate arrays, without explicitly managing allocation, synchronization, or communication among those units.
The stream processing paradigm simplifies parallel software and hardware by restricting the parallel computation that can be performed. Given a sequence of data, a series of operations is applied to each element in the stream. Kernel functions are usually pipelined, and optimal local on-chip memory reuse is attempted, in order to minimize the loss in bandwidth, associated with external memory interaction. Uniform streaming, where one kernel function is applied to all elements in the stream, is typical. Since the kernel and stream abstractions expose data dependencies, compiler tools can fully automate and optimize on-chip management tasks. Stream processing hardware can use scoreboarding, for example, to initiate a direct memory access when dependencies become known. The elimination of manual DMA management reduces software complexity, and an associated elimination for hardware cached I/O, reduces the data area expanse that has to be involved with service by specialized computational units such as arithmetic logic units.
During the 1980s stream processing was explored within dataflow programming. An example is the language SISAL.

Applications

Stream processing is essentially a compromise, driven by a data-centric model that works very well for traditional DSP or GPU-type applications but less so for general purpose processing with more randomized data access. By sacrificing some flexibility in the model, the implications allow easier, faster and more efficient execution. Depending on the context, processor design may be tuned for maximum efficiency or a trade-off for flexibility.
Stream processing is especially suitable for applications that exhibit three application characteristics:
Examples of records within streams include:
For each record we can only read from the input, perform operations on it, and write to the output. It is permissible to have multiple inputs and multiple outputs, but never a piece of memory that is both readable and writable.

Comparison to prior parallel paradigms

Basic computers started from a sequential execution paradigm. Traditional CPUs are SISD based, which means they conceptually perform only one operation at a time.
As the computing needs of the world evolved, the amount of data to be managed increased very quickly. It was obvious that the sequential programming model could not cope with the increased need for processing power. Various efforts have been spent on finding alternative ways to perform massive amounts of computations but the only solution was to exploit some level of parallel execution.
The result of those efforts was SIMD, a programming paradigm which allowed applying one instruction to multiple instances of data. Most of the time, SIMD was being used in a SWAR environment. By using more complicated structures, one could also have MIMD parallelism.
Although those two paradigms were efficient, real-world implementations were plagued with limitations from memory alignment problems to synchronization issues and limited parallelism. Only few SIMD processors survived as stand-alone components; most were embedded in standard CPUs.
Consider a simple program adding up two arrays containing 100 4-component vectors.

Conventional, sequential paradigm


for
result = source0 + source1;

This is the sequential paradigm that is most familiar. Variations do exist, but they ultimately boil down to that construct.

Parallel SIMD paradigm, packed registers (SWAR)


for // for each vector
vector_sum;

This is actually oversimplified. It assumes the instruction vector_sum works. Although this is what happens with instruction intrinsics, much information is actually not taken into account here such as the number of vector components and their data format. This is done for clarity.
You can see however, this method reduces the number of decoded instructions from numElements * componentsPerElement to numElements. The number of jump instructions is also decreased, as the loop is run fewer times. These gains result from the parallel execution of the four mathematical operations.
What happened however is that the packed SIMD register holds a certain amount of data so it's not possible to get more parallelism. The speed up is somewhat limited by the assumption we made of performing four parallel operations.

Parallel Stream paradigm (SIMD/MIMD)


// This is a fictional language for demonstration purposes.
elements = array streamElement
kernel = instance streamKernel
result = kernel.invoke

In this paradigm, the whole dataset is defined, rather than each component block being defined separately. Describing the set of data is assumed to be in the first two rows. After that, the result is inferred from the sources and kernel. For simplicity, there's a 1:1 mapping between input and output data but this does not need to be. Applied kernels can also be much more complex.
An implementation of this paradigm can "unroll" a loop internally. This allows throughput to scale with chip complexity, easily utilizing hundreds of ALUs. The elimination of complex data patterns makes much of this extra power available.
While stream processing is a branch of SIMD/MIMD processing, they must not be confused. Although SIMD implementations can often work in a "streaming" manner, their performance is not comparable: the model envisions a very different usage pattern which allows far greater performance by itself.
It has been noted that when applied on generic processors such as standard CPU, only a 1.5x speedup can be reached. By contrast, ad-hoc stream processors easily reach over 10x performance, mainly attributed to the more efficient memory access and higher levels of parallel processing.
Although there are various degrees of flexibility allowed by the model, stream processors usually impose some limitations on the kernel or stream size. For example, consumer hardware often lacks the ability to perform high-precision math, lacks complex indirection chains or presents lower limits on the number of instructions which can be executed.

Research

stream processing projects included the Stanford Real-Time Programmable Shading Project started in 1999.
A prototype called Imagine was developed in 2002.
A project called Merrimac ran until about 2004.
AT&T also researched stream-enhanced processors as graphics processing units rapidly evolved in both speed and functionality. Since these early days, dozens of stream processing languages have been developed, as well as specialized hardware.

Programming model notes

The most immediate challenge in the realm of parallel processing does not lie as much in the type of hardware architecture used, but in how easy it will be to program the system in question in a real-world environment with acceptable performance. Machines like Imagine use a straightforward single-threaded model with automated dependencies, memory allocation and DMA scheduling. This in itself is a result of the research at MIT and Stanford in finding an optimal layering of tasks between programmer, tools and hardware. Programmers beat tools in mapping algorithms to parallel hardware, and tools beat programmers in figuring out smartest memory allocation schemes, etc. Of particular concern are MIMD designs such as Cell, for which the programmer needs to deal with application partitioning across multiple cores and deal with process synchronization and load balancing. Efficient multi-core programming tools are severely lacking today.
A drawback of SIMD programming was the issue of Array-of-Structures and Structure-of-Arrays. Programmers often wanted to build data structures with a 'real' meaning, for example:

// A particle in a three-dimensional space.
struct particle_t ;

What happened is that those structures were then assembled in arrays to keep things nicely organized. This is array of structures.
When the structure is laid out in memory, the compiler will produce interleaved data, in the sense that all the structures will be contiguous but there will be a constant offset between, say, the "size" attribute of a structure instance and the same element of the following instance. The offset depends on the structure definition.
There are also other problems. For example, the three position variables cannot be SIMD-ized that way, because it's not sure they will be allocated in continuous memory space. To make sure SIMD operations can work on them, they shall be grouped in a 'packed memory location' or at least in an array.
Another problem lies in both "color" and "xyz" to be defined in three-component vector quantities. SIMD processors usually have support for 4-component operations only.
These kinds of problems and limitations made SIMD acceleration on standard CPUs quite nasty.
The proposed solution, structure of arrays follows as:

struct particle_t ;

For readers not experienced with C, the '*' before each identifier means a pointer. In this case, they will be used to point to the first element of an array, which is to be allocated later. For Java programmers, this is roughly equivalent to "".
The drawback here is that the various attributes could be spread in memory. To make sure this does not cause cache misses, we'll have to update all the various "reds", then all the "greens" and "blues".
For stream processors, the usage of structures is encouraged. From an application point of view, all the attributes can be defined with some flexibility.
Taking GPUs as reference, there is a set of attributes available. For each attribute, the application can state the number of components and the format of the components. The various attributes are then attached to a memory block, possibly defining a stride between 'consecutive' elements of the same attributes, effectively allowing interleaved data.
When the GPU begins the stream processing, it will gather all the various attributes in a single set of parameters, performs the operations and scatters the results to some memory area for later processing.
More modern stream processing frameworks provide a FIFO like interface to structure data as a literal stream. This abstraction
provides a means to specify data dependencies implicitly while enabling the runtime/hardware to take full advantage of that
knowledge for efficient computation. One of the simplest and most efficient stream processing modalities to date for C++,
is RaftLib, which enables linking independent compute kernels together as a data flow graph using C++ stream operators.
As an example:

  1. include
  2. include
  3. include
  4. include
class hi : public raft::kernel
int
main

Models of computation for stream processing

Apart from specifying streaming applications in high-level language. Models of computation also have been widely used such as dataflow models and process-based models.

Generic processor architecture

Historically, CPUs began implementing various tiers of memory access optimizations because of the ever-increasing performance when compared to relatively slow growing external memory bandwidth. As this gap widened, big amounts of die area were dedicated to hiding memory latencies. Since fetching information and opcodes to those few ALUs is expensive, very little die area is dedicated to actual mathematical machinery.
A similar architecture exists on stream processors but thanks to the new programming model, the amount of transistors dedicated to management is actually very little.
Beginning from a whole system point of view, stream processors usually exist in a controlled environment. GPUs do exist on an add-in board. CPUs do the dirty job of managing system resources, running applications and such.
The stream processor is usually equipped with a fast, efficient, proprietary memory bus. The exact amount of memory lanes is dependent on the market range. As this is written, there are still 64-bit wide interconnections around. Most mid-range models use a fast 128-bit crossbar switch matrix, while high-end models deploy huge amounts of memory with a slightly slower crossbar that is 256 bits wide. By contrast, standard processors from Intel Pentium to some Athlon 64 have only a single 64-bit wide data bus.
Memory access patterns are much more predictable. While arrays do exist, their dimension is fixed at kernel invocation. The thing which most closely matches a multiple pointer indirection is an indirection chain, which is however guaranteed to finally read or write from a specific memory area.
Because of the SIMD nature of the stream processor's execution units, read/write operations are expected to happen in bulk, so memories are optimized for high bandwidth rather than low latency. This also allows for efficient memory bus negotiations.
Most of a stream processor's work is done on-chip, requiring only 1% of the global data to be stored to memory. This is where knowing the kernel temporaries and dependencies pays.
Internally, a stream processor features some clever communication and management circuits but what's interesting is the Stream Register File. This is conceptually a large cache in which stream data is stored to be transferred to external memory in bulks. As a cache-like software-controlled structure to the various ALUs, the SRF is shared between all the various ALU clusters. The key concept and innovation here done with Stanford's Imagine chip is that the compiler is able to automate and allocate memory in an optimal way, fully transparent to the programmer. The dependencies between kernel functions and data is known through the programming model which enables the compiler to perform flow analysis and optimally pack the SRFs. Commonly, this cache and DMA management can take up the majority of a project's schedule, something the stream processor totally automates. Tests done at Stanford showed that the compiler did an as well or better job at scheduling memory than if you hand tuned the thing with much effort.
There is proof; there can be a lot of clusters because inter-cluster communication is assumed to be rare. Internally however, each cluster can efficiently exploit a much lower amount of ALUs because intra-cluster communication is common and thus needs to be highly efficient.
To keep those ALUs fetched with data, each ALU is equipped with local register files, which are basically its usable registers.
This three-tiered data access pattern, makes it easy to keep temporary data away from slow memories, thus making the silicon implementation highly efficient and power-saving.

Hardware-in-the-loop issues

Although an order of magnitude speedup can be reasonably expected, not all applications benefit from this.
Communication latencies are actually the biggest problem. Although PCI Express improved this with full-duplex communications, getting a GPU to work will possibly take long amounts of time. This means it's usually counter-productive to use them for small datasets. Because changing the kernel is a rather expensive operation the stream architecture also incurs penalties for small streams, a behaviour referred to as the short stream effect.
Pipelining is a very widespread and heavily used practice on stream processors, with GPUs featuring pipelines exceeding 200 stages. The cost for switching settings is dependent on the setting being modified but it is now considered to always be expensive. To avoid those problems at various levels of the pipeline, many techniques have been deployed such as "über shaders" and "texture atlases". Those techniques are game-oriented because of the nature of GPUs, but the concepts are interesting for generic stream processing as well.

Examples

Most programming languages for stream processors start with Java, C or C++ and add extensions which provide specific instructions to allow application developers to tag kernels and/or streams. This also applies to most shading languages, which can be considered stream programming languages to a certain degree.
Non-commercial examples of stream programming languages include:
Commercial implementations are either general purpose or tied to specific hardware by a vendor. Examples of general purpose languages include:
Vendor-specific languages include:
Event-Based Processing
Batch File-Based Processing
Continuous Operator Stream Processing
Stream Processing Services: