Streptococcus
Streptococcus is a genus of gram-positive coccus or spherical bacteria that belongs to the family Streptococcaceae, within the order Lactobacillales, in the phylum Firmicutes. Cell division in streptococci occurs along a single axis, so as they grow, they tend to form pairs or chains that may appear bent or twisted.
The term was coined in 1877 by Viennese surgeon Albert Theodor Billroth, by combining the prefix "strepto-", together with the suffix "-coccus"
Most streptococci are oxidase-negative and catalase-negative, and many are facultative anaerobes.
In 1984, many bacteria formerly grouped in the genus Streptococcus were separated out into the genera Enterococcus and Lactococcus. Currently, over 50 species are recognised in this genus. This genus has been found to be part of the salivary microbiome.
Pathogenesis and classification
In addition to streptococcal pharyngitis, certain Streptococcus species are responsible for many cases of pink eye, meningitis, bacterial pneumonia, endocarditis, erysipelas, and necrotizing fasciitis. However, many streptococcal species are not pathogenic, and form part of the commensal human microbiota of the mouth, skin, intestine, and upper respiratory tract. Streptococci are also a necessary ingredient in producing Emmentaler cheese.Species of Streptococcus are classified based on their hemolytic properties. Alpha-hemolytic species cause oxidization of iron in hemoglobin molecules within red blood cells, giving it a greenish color on blood agar. Beta-hemolytic species cause complete rupture of red blood cells. On blood agar, this appears as wide areas clear of blood cells surrounding bacterial colonies. Gamma-hemolytic species cause no hemolysis.
Beta-hemolytic streptococci are further classified by Lancefield grouping, a serotype classification. The 21 described serotypes are named Lancefield groups A to W. This system of classification was developed by Rebecca Lancefield, a scientist at Rockefeller University.
In the medical setting, the most important groups are the alpha-hemolytic streptococci S. pneumoniae and Streptococcus viridans group, and the beta-hemolytic streptococci of Lancefield groups A and B.
Table: Medically relevant streptococci
Species | Host | Disease |
S. pyogenes | human | pharyngitis, cellulitis, erysipelas |
S. agalactiae | human, cattle | neonatal meningitis and sepsis |
S. dysgalactiae | human, animals | endocarditis, bacteremia, pneumonia, meningitis, respiratory infections |
S. bovis | human, animals | biliary or urinary tract infections, endocarditis |
S. anginosus | human, animals | subcutaneous/organ abscesses, meningitis, respiratory infections |
S. sanguinis | human | endocarditis, dental caries |
S. suis | swine | meningitis |
S. mitis | human | endocarditis |
S. mutans | human | dental caries |
S. pneumoniae | human | pneumonia |
Alpha-hemolytic
When alpha-hemolysis is present, the agar under the colony will appear dark and greenish due to the conversion of hemoglobin to green biliverdin. Streptococcus pneumoniae and a group of oral streptococci display alpha-hemolysis.Alpha-hemolysis is also termed incomplete hemolysis or partial hemolysis because the cell membranes of the red blood cells are left intact. This is also sometimes called green hemolysis because of the color change in the agar.
Pneumococci
- S. pneumoniae, is a leading cause of bacterial pneumonia and occasional etiology of otitis media, sinusitis, meningitis, and peritonitis. Inflammation is thought to be the major cause of how pneumococci cause disease, hence the tendency of diagnoses associated with them to involve inflammation.
The viridans group: alpha-hemolytic
- The viridans streptococci are a large group of commensal bacteria that are either alpha-hemolytic, producing a green coloration on blood agar plates, or nonhemolytic. They possess no Lancefield antigens.
Beta-hemolytic
Some weakly beta-hemolytic species cause intense hemolysis when grown together with a strain of Staphylococcus. This is called the CAMP test. Streptococcus agalactiae displays this property. Clostridium perfringens can be identified presumptively with this test. Listeria monocytogenes is also positive on sheep's blood agar.
and beta-hemolytic S. pyogenes'' streptococci growing on blood agar
Group A
Group A S. pyogenes is the causative agent in a wide range of group A streptococcal infections. These infections may be noninvasive or invasive. The noninvasive infections tend to be more common and less severe. The most common of these infections include streptococcal pharyngitis and impetigo. Scarlet fever is also a noninvasive infection, but has not been as common in recent years.The invasive infections caused by group A beta-hemolytic streptococci tend to be more severe and less common. This occurs when the bacterium is able to infect areas where it is not usually found, such as the blood and the organs. The diseases that may be caused include streptococcal toxic shock syndrome, necrotizing fasciitis, pneumonia, and bacteremia. Globally, GAS has been estimated to cause more than 500,000 deaths every year, making it one of the world's leading pathogens.
Additional complications may be caused by GAS, namely acute rheumatic fever and acute glomerulonephritis. Rheumatic fever, a disease that affects the joints, kidneys, and heart valves, is a consequence of untreated strep A infection caused not by the bacterium itself. Rheumatic fever is caused by the antibodies created by the immune system to fight off the infection cross-reacting with other proteins in the body. This "cross-reaction" causes the body to essentially attack itself and leads to the damage above. A similar autoimmune mechanism initiated by Group A beta-hemolytic streptococcal infection is hypothesized to cause pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, wherein autoimmune antibodies affect the basal ganglia, causing rapid onset of psychiatric, motor, sleep, and other symptoms in pediatric patients.
GAS infection is generally diagnosed with a rapid strep test or by culture.
Group B
S. agalactiae, or group B streptococcus, GBS, causes pneumonia and meningitis in newborns and the elderly, with occasional systemic bacteremia. Importantly, Streptococcus agalactiae is the most common cause of meningitis in infants from one month to three months old. They can also colonize the intestines and the female reproductive tract, increasing the risk for premature rupture of membranes during pregnancy, and transmission of the organism to the infant. The American College of Obstetricians and Gynecologists, American Academy of Pediatrics, and the Centers for Disease Control recommend all pregnant women between 35 and 37 weeks gestation to be tested for GBS. Women who test positive should be given prophylactic antibiotics during labor, which will usually prevent transmission to the infant.The United Kingdom has chosen to adopt a risk factor-based protocol, rather than the culture-based protocol followed in the US. Current guidelines state that if one or more of the following risk factors is present, then the woman should be treated with intrapartum antibiotics:
- Preterm labour
- Prolonged rupture of membranes
- Intrapartum fever
- History of GBS disease in a previous infant
- GBS bacteriuria during this pregnancy
Group C
This group includes S. equi, which causes strangles in horses, and S. zooepidemicus—S. equi is a clonal descendant or biovar of the ancestral S. zooepidemicus—which causes infections in several species of mammals, including cattle and horses. S. dysgalactiae is also a member of group C, beta-haemolytic streptococci that can cause pharyngitis and other pyogenic infections similar to group A streptococci.Group D (enterococci)
Many former group D streptococci have been reclassified and placed in the genus Enterococcus. For example, Streptococcus faecalis is now Enterococcus faecalis. E. faecalis is sometimes alpha-hemolytic and E. faecium is sometimes beta hemolytic.The remaining nonenterococcal group D strains include Streptococcus bovis and Streptococcus equinus.
Nonhemolytic streptococci rarely cause illness. However, weakly hemolytic group D beta-hemolytic streptococci and Listeria monocytogenes should not be confused with nonhemolytic streptococci.
Group F streptococci
Group F streptococci were first described in 1934 by Long and Bliss amongst the "minute haemolytic streptococci". They are also known as Streptococcus anginosus or as members of the S. milleri group.Group G streptococci
These streptococci are usually, but not exclusively, beta-hemolytic. Streptococcus dysgalactiae is the predominant species encountered, particularly in human disease. S. canis is an example of a GGS which is typically found on animals, but can cause infection in humans. S. phocae is a GGS subspecies that has been found in marine mammals and marine fish species. In marine mammals it has been mainly associated with meningoencephalitis, sepsis, and endocarditis, but is also associated with many other pathologies. Its environmental reservoir and means of transmission in marine mammals is not well characterized.Group H streptococci
Group H streptococci cause infections in medium-sized canines. Group H streptococci rarely cause illness unless a human has direct contact with the mouth of a canine. One of the most common ways this can be spread is human-to-canine, mouth-to-mouth contact. However, the canine may lick the human's hand and infection can be spread, as well.Molecular taxonomy and phylogenetics
Streptococci have been divided into six groups on the basis of their 16S rDNA sequences: S. anginosus, S.bovis, S. mitis, S. mutans, S. pyogenes and S. salivarius. The 16S groups have been confirmed by whole genome sequencing. The important pathogens S. pneumoniae and S. pyogenes belong to the S. mitis and S. pyogenes groups, respectively, while the causative agent of dental caries, Streptococcus mutans, is basal to the Streptococcus group.Genomics
The genomes of hundreds of species have been sequenced. Most Streptococcus genomes are 1.8 to 2.3 Mb in size and encode 1,700 to 2,300 proteins. Some important genomes are listed in the table. The four species shown in the table have an average pairwise protein sequence identity of about 70%.feature | S. pyogenes | S. agalactiae | S. pneumoniae | S. mutans |
base pairs | 1,852,442 | 2,211,488 | 2,160,837 | 2,030,921 |
ORFs | 1792 | 2118 | 2236 | 1963 |
prophages | yes | no | no | no |
Bacteriophage
s have been described for many species of Streptococcus. 18 prophages have been described in S. pneumoniae that range in size from 38 to 41 kb in size, encoding from 42 to 66 genes each. Some of the first Streptococcus phages discovered were Dp-1and ω1.
In 1981 the Cp family was discovered with Cp-1 as its first member. Dp-1 and Cp-1 infect both S. pneumoniae and S. mitis. However, the host ranges of most Streptococcus phages have not been investigated systematically.