Sunspot


Sunspots are temporary phenomena on the Sun's photosphere that appear as spots darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic field flux that inhibit convection. Sunspots usually appear in pairs of opposite magnetic polarity. Their number varies according to the approximately 11-year solar cycle.
Individual sunspots or groups of sunspots may last anywhere from a few days to a few months, but eventually decay. Sunspots expand and contract as they move across the surface of the Sun, with diameters ranging from to. Larger sunspots can be visible from Earth without the aid of a telescope. They may travel at relative speeds, or proper motions, of a few hundred meters per second when they first emerge.
Indicating intense magnetic activity, sunspots accompany secondary phenomena such as coronal loops, prominences, and reconnection events. Most solar flares and coronal mass ejections originate in magnetically active regions around visible sunspot groupings. Similar phenomena indirectly observed on stars other than the Sun are commonly called starspots, and both light and dark spots have been measured.

History

The earliest extant report of sunspots dates back to the Chinese Book of Changes,. The first clear mention of a sunspot in Western literature, around 300 BC, was by the ancient Greek scholar Theophrastus, student of Plato and Aristotle and successor to the latter. The earliest surviving record of deliberate sunspot observation dates from 364 BC, based on comments by Chinese astronomer Gan De in a star catalogue. By 28 BC, Chinese astronomers were regularly recording sunspot observations in official imperial records. The first drawings of sunspots were made by an English monk named John of Worcester in December 1128. Sunspots were first observed telescopically in late 1610 by English astronomer Thomas Harriot and Frisian astronomers Johannes and David Fabricius, who published a description in June 1611.. After Johannes Fabricius' early death at the age of 29, the book remained obscure and was eclipsed by the independent discoveries of and publications about sunspots by Christoph Scheiner and Galileo Galilei, few months later.

Physics

Although they are at temperatures of roughly, the contrast with the surrounding material at about leaves sunspots clearly visible as dark spots. This is because the luminance of a heated black body at these temperatures varies greatly with temperature. Isolated from the surrounding photosphere, a single sunspot would shine brighter than the full moon, with a crimson-orange color.
Sunspots have two parts: the central, which is the darkest part, where the magnetic field is approximately vertical and the surrounding, which is lighter, where the magnetic field is more inclined.

Lifecycle

Any given appearance of a sunspot may last anywhere from a few days to a few months, though groups of sunspots and their active regions tend to last weeks or months, but all do eventually decay and disappear. Sunspots expand and contract as they move across the surface of the Sun, with diameters ranging from to.
Although the details of sunspot generation are still a matter of research, it appears that sunspots are the visible counterparts of magnetic flux tubes in the Sun's convective zone that get "wound up" by differential rotation. If the stress on the tubes reaches a certain limit, a loop of the tube may project through the photosphere, the Sun's visible surface. Convection is inhibited at the puncture points; the energy flux from the Sun's interior decreases, and with it, surface temperature, causing the surface area through which the magnetic field passes to look dark against the bright background of the photosphere.
The Wilson effect implies that sunspots are depressions on the Sun's surface. Observations using the Zeeman effect show that prototypical sunspots come in pairs with opposite magnetic polarity. From cycle to cycle, the polarities of leading and trailing sunspots change from north/south to south/north and back. Sunspots usually appear in groups.
Magnetic pressure should tend to remove field concentrations, causing the sunspots to disperse, but sunspot lifetimes are measured in days to weeks. In 2001, observations from the Solar and Heliospheric Observatory using sound waves traveling below the photosphere were used to develop a three-dimensional image of the internal structure below sunspots; these observations show that a powerful downdraft underneath each sunspot, forms a rotating vortex that sustains the concentrated magnetic field.

Solar cycle

Sunspot activity cycles are about every eleven years, with some variation in length. Over the solar cycle, sunspot populations rise quickly and then fall more slowly. The point of highest sunspot activity during a cycle is known as solar maximum, and the point of lowest activity as solar minimum. This period is also observed in most other solar activity and is linked to a variation in the solar magnetic field that changes polarity with this period.
Early in the cycle, sunspots appear in the higher latitudes and then move towards the equator as the cycle approaches maximum, following Spörer's law. Spots from two adjacent cycles can co-exist for some time. Spots from adjacent cycles can be distinguished by direction of their magnetic field.
The Wolf number sunspot index counts the average number of sunspots and groups of sunspots during specific intervals. The 11-year solar cycles are numbered sequentially, starting with the observations made in the 1750s.
George Ellery Hale first linked magnetic fields and sunspots in 1908. Hale suggested that the sunspot cycle period is 22 years, covering two periods of increased and decreased sunspot numbers, accompanied by polar reversals of the solar magnetic dipole field. Horace W. Babcock later proposed a qualitative model for the dynamics of the solar outer layers. The Babcock Model explains that magnetic fields cause the behavior described by Spörer's law, as well as other effects, which are twisted by the Sun's rotation.

Longer-period trends

Sunspot number also changes over long periods. For example, from 1900 to the 1960s, the solar maxima trend of sunspot count was upwards; for the following decades it diminished. Overall, the Sun was last as active as this period over 8,000 years ago.
Sunspots number is correlated with the intensity of solar radiation over the period since 1979, when satellite measurements became available. The variation caused by the sunspot cycle to solar output is on the order of 0.1% of the solar constant.

Modern observation

Sunspots are observed with land-based and Earth-orbiting solar telescopes. These telescopes use filtration and projection techniques for direct observation, in addition to various types of filtered cameras. Specialized tools such as spectroscopes and spectrohelioscopes are used to examine sunspots and sunspot areas. Artificial eclipses allow viewing of the circumference of the Sun as sunspots rotate through the horizon.
Since looking directly at the Sun with the naked eye permanently damages human vision, amateur observation of sunspots is generally conducted using projected images, or directly through protective filters. Small sections of very dark filter glass, such as a #14 welder's glass, are effective. A telescope eyepiece can project the image, without filtration, onto a white screen where it can be viewed indirectly, and even traced, to follow sunspot evolution. Special purpose hydrogen-alpha narrow bandpass filters and aluminum-coated glass attenuation filters on the front of a telescope provide safe observation through the eyepiece.

Application

Due to its link to other kinds of solar activity, sunspot occurrence can be used to help predict space weather, the state of the ionosphere, and hence the conditions of short-wave radio propagation or satellite communications. High sunspot activity is celebrated by members of the amateur radio community as a harbinger of excellent ionospheric propagation conditions that greatly increase radio range in the HF bands. During sunspot peaks, worldwide radio communication can be possible on frequencies as high as the 6-meter VHF band. Solar activity have been implicated in global warming, originally the role of the Maunder Minimum of sunspot occurrence in the Little Ice Age in European winter climate. Sunspots themselves, in terms of the magnitude of their radiant-energy deficit, have a weak effect on solar flux however the total solar flux increases as "At solar maximum the Sun is some 0.1% brighter than its solar-minimum level". On longer time scales, such as the solar cycle, other magnetic phenomena correlate with sunspot occurrence.

Starspot

In 1947, G. E. Kron proposed that starspots were the reason for periodic changes in brightness on red dwarfs. Since the mid-1990s, starspot observations have been made using increasingly powerful techniques yielding more and more detail: photometry showed starspot growth and decay and showed cyclic behavior similar to the Sun's; spectroscopy examined the structure of starspot regions by analyzing variations in spectral line splitting due to the Zeeman effect; Doppler imaging showed differential rotation of spots for several stars and distributions different from the Sun's; spectral line analysis measured the temperature range of spots and the stellar surfaces. For example, in 1999, Strassmeier reported the largest cool starspot ever seen rotating the giant K0 star XX Triangulum with a temperature of, together with a warm spot of.

Gallery

Videos

Sunspot data