Surface engineering


Surface engineering is the sub-discipline of materials science which deals with the surface of solid matter. It has applications to chemistry, mechanical engineering, and electrical engineering.
Solids are composed of a bulk material covered by a surface. The surface which bounds the bulk material is called the Surface phase. It acts as an interface to the surrounding environment. The bulk material in a solid is called the Bulk phase.
The surface phase of a solid interacts with the surrounding environment. This interaction can degrade the surface phase over time. Environmental degradation of the surface phase over time can be caused by wear, corrosion, fatigue and creep.
Surface engineering involves altering the properties of the surface phase in order to reduce the degradation over time. This is accomplished by making the surface robust to the environment in which it will be used. It provides a cost-effective material for robust design. A spectrum of topics that represent the diverse nature of the field of surface engineering includes Plating technologies, Nano and emerging technologies and Surface engineering, characterization and testing.

Applications

Surface engineering techniques are being used in the automotive, aerospace, missile, power, electronic, biomedical, textile, petroleum, petrochemical, chemical, steel, cement, machine tools and construction industries including road surfacing. Surface engineering techniques can be used to develop a wide range of functional properties, including physical, chemical, electrical, electronic, magnetic, mechanical, wear-resistant and corrosion-resistant properties at the required substrate surfaces. Almost all types of materials, including metals, ceramics, polymers, and composites can be coated on similar or dissimilar materials. It is also possible to form coatings of newer materials, graded deposits, multi-component deposits etc. A succinct review of surface engineering applications is given in the recent book 'Introduction to Surface Engineering' published by Cambridge University Press in 2017.
In 1995, surface engineering was a £10 billion market in the United Kingdom. Coatings, to make surface life robust from wear and corrosion, was approximately half the market.
In recent years, there has been a paradigm shift in surface engineering from age-old electroplating to processes such as vapor phase deposition, diffusion, thermal spray & welding using like plasma, laser, ion, electron, microwave, solar beams, pulsed arc, pulsed combustion, spark, friction and induction.
It's estimated that loss due to wear and corrosion in the US is approximately $500 billion. In the US, there are around 9524 establishments who depend on engineered surfaces with support from 23,466 industries.
There are around 65 academic institutions world-wide engaged in surface engineering research and education.

Surface Cleaning Techniques

Surface cleaning, synonymously referred to as dry cleaning, is a mechanical
cleaning technique used to reduce superficial soil, dust, grime, insect droppings,
accretions, or other surface deposits. Surface cleaning
may be used as an independent cleaning technique, as one step in a more comprehensive treatment, or as a prelude to further treatments
which may cause dirt to set irreversibly in paper
fibers.

Purpose

The purpose of surface cleaning is to reduce the potential for damage to paper
artifacts by removing foreign material which can be abrasive, acidic,
hygroscopic, or degradative. The decision to remove surface dirt is also for
aesthetic reasons when it interferes with the visibility of the imagery or
information. A decision must be made balancing the probable care of each
object against the possible problems related to surface cleaning.