Suspended animation


Suspended animation is the temporary slowing or stopping of biological function so that physiological capabilities are preserved. It may be either hypometabolic or ametabolic in nature. It may be induced by either endogenous, natural or artificial biological, chemical or physical means. In its natural form it may be spontaneously reversible as in the case of species demonstrating hypometabolic states of hibernation or require technologically mediated revival when applied with therapeutic intent in the medical setting as in the case of deep hypothermic circulatory arrest.

Basic principles

Suspended animation has been understood as the slowing or stopping of life processes by exogenous or endogenous means without terminating life itself. Breathing, heartbeat and other involuntary functions may still occur, but they can only be detected by artificial means. For this reason, this procedure has been associated with a lethargic state in nature when animals or plants appear, over a period, to be dead but then can wake up or prevail without suffering any harm. This has been termed in different contexts hibernation, dormancy or anabiosis. In July 2020, marine biologists reported that aerobic microorganisms, in "quasi-suspended animation", were found in organically-poor sediments, up to 101.5 million years old, 250 feet below the seafloor in the South Pacific Gyre , and could be the longest-living life forms ever found.
This condition of apparent death or interruption of vital signs may be similar to a medical interpretation of suspended animation. It is only possible to recover signs of life if the brain and other vital organs suffer no cell deterioration, necrosis or molecular death principally caused by oxygen deprivation or excess temperature.
Some examples of people that have returned from this apparent interruption of life lasting over half an hour, two hours, eight hours or more while adhering to these specific conditions for oxygen and temperature have been reported and analysed in depth, but these cases are not considered scientifically valid. The brain begins to die after five minutes without oxygen; nervous tissues die intermediately when a "somatic death" occurs while muscles die over one to two hours following this last condition.
It has been possible to obtain a successful resuscitation and recover life in some instances, including after anaesthesia, heat stroke, electrocution, narcotic poisoning, heart attack or cardiac arrest, shock, newborn infants, cerebral concussion, or cholera.
Supposedly, in suspended animation, a person technically would not die, as long as he or she were able to preserve the minimum conditions in an environment extremely close to death and return to a normal living state. An example of such a case is Anna Bågenholm, a Swedish radiologist who allegedly survived 40 minutes under ice in a frozen lake in a state of cardiac arrest with no brain damage in 1999.
Other cases of hypothermia where people survived without damage are:
Since the 1970s, induced hypothermia has been performed for some open-heart surgeries as an alternative to heart-lung machines. Hypothermia, however, provides only a limited amount of time in which to operate and there is a risk of tissue and brain damage for prolonged periods.
There are many research projects currently investigating how to achieve "induced hibernation" in humans. This ability to hibernate humans would be useful for a number of reasons, such as saving the lives of seriously ill or injured people by temporarily putting them in a state of hibernation until treatment can be given.
The primary focus of research for human hibernation is to reach a state of torpor, defined as a gradual physiological inhibition to reduce oxygen demand and obtain energy conservation by hypometabolic behaviors altering biochemical processes. In previous studies, it was demonstrated that physiological and biochemical events could inhibit endogenous thermoregulation before the onset of hypothermia in a challenging process known as "estivation". This is indispensable to survive harsh environmental conditions, as seen in some amphibians and reptiles.

Scientific possibilities

Temperature-induced

Lowering the temperature of a substance reduces chemical activity by the Arrhenius equation. This includes life processes such as metabolism.

Hypothermic range

In June 2005, scientists at the University of Pittsburgh's Safar Center for Resuscitation Research announced they had managed to place dogs in suspended animation and bring them back to life, most of them without brain damage, by draining the blood out of the dogs' bodies and injecting a low temperature solution into their circulatory systems, which in turn keeps the bodies alive in stasis. After three hours of being clinically dead, the dogs' blood was returned to their circulatory systems, and the animals were revived by delivering an electric shock to their hearts. The heart started pumping the blood around the body, and the dogs were brought back to life.
On 20 January 2006, doctors from the Massachusetts General Hospital in Boston announced they had placed pigs in suspended animation with a similar technique. The pigs were anaesthetized and major blood loss was induced, along with simulated - via scalpel - severe injuries. After the pigs lost about half their blood the remaining blood was replaced with a chilled saline solution. As the body temperature reached the damaged blood vessels were repaired and the blood was returned. The method was tested 200 times with a 90% success rate.

Chemically induced

The laboratory of Mark Roth at the Fred Hutchinson Cancer Research Center and institutes such as Suspended Animation, Inc are trying to implement suspended animation as a medical procedure which involves the therapeutic induction to a complete and temporary systemic ischemia, directed to obtain a state of tolerance for the protection-preservation of the entire organism, this during a circulatory collapse "only by a limited period of one hour". The purpose to avoid a serious injury, risk of brain damage or death, until the patient reaches specialized attention.