Sylvester matrix


In mathematics, a Sylvester matrix is a matrix associated to two univariate polynomials with coefficients in a field or a commutative ring. The entries of the Sylvester matrix of two polynomials are coefficients of the polynomials. The determinant of the Sylvester matrix of two polynomials is their resultant, which is zero when the two polynomials have a common root or a non-constant common divisor.
Sylvester matrices are named after James Joseph Sylvester.

Definition

Formally, let p and q be two nonzero polynomials, respectively of degree m and n. Thus:
The Sylvester matrix associated to p and q is then the matrix constructed as follows:
Thus, if m = 4 and n = 3, the matrix is:
If one of the degrees is zero, then there are zero rows consisting of coefficients of the other polynomial, and the Sylvester matrix is a diagonal matrix of dimension the degree of the non-constant polynomial, with the all diagonal coefficients equal to the constant polynomial. If m = n = 0, then the Sylvester matrix is the empty matrix with zero rows and zero columns.

A variant

The above defined Sylvester matrix appears in a Sylvester paper of 1840. In a paper of 1853, Sylvester introduced the following matrix, which is, up to a permutation of the rows, the Sylvester matrix of p and q, which are both considered as having degree max.
This is thus a -matrix containing pairs of rows. Assuming it is obtained as follows:
Thus, if m = 4 and n = 3, the matrix is:
The determinant of the 1853 matrix is, up to sign, the product of the determinant of the Sylvester matrix by .

Applications

These matrices are used in commutative algebra, e.g. to test if two polynomials have a common factor. In such a case, the determinant of the associated Sylvester matrix equals zero. The converse is also true.
The solutions of the simultaneous linear equations
where is a vector of size and has size, comprise the coefficient vectors of those and only those pairs of polynomials which fulfill
where polynomial multiplication and addition is used.
This means the kernel of the transposed Sylvester matrix gives all solutions of the Bézout equation where and.
Consequently the rank of the Sylvester matrix determines the degree of the greatest common divisor of p and q:
Moreover, the coefficients of this greatest common divisor may be expressed as determinants of submatrices of the Sylvester matrix.