Synovial fluid
Synovial fluid, also called synovia,#Etymology and pronunciation| is a viscous, non-Newtonian fluid found in the cavities of synovial joints. With its egg white–like consistency, the principal role of synovial fluid is to reduce friction between the articular cartilage of synovial joints during movement. Synovial fluid is a small component of the transcellular fluid component of extracellular fluid.
Structure
The inner membrane of synovial joints is called the synovial membrane and secretes synovial fluid into the joint cavity. Synovial fluid is an ultrafiltrate from plasma, and contains proteins derived from the blood plasma and proteins that areproduced by cells within the joint tissues. The fluid contains hyaluronan secreted by fibroblast-like cells in the synovial membrane, lubricin secreted by the surface chondrocytes of the articular cartilage and interstitial fluid filtered from the blood plasma. This fluid forms a thin layer at the surface of cartilage and also seeps into microcavities and irregularities in the articular cartilage surface, filling all empty space. The fluid in articular cartilage effectively serves as a synovial fluid reserve. During movement, the synovial fluid held in the cartilage is squeezed out mechanically to maintain a layer of fluid on the cartilage surface.
The functions of the synovial fluid include:
- reduction of friction — synovial fluid lubricates the articulating joints
- shock absorption — as a dilatant fluid, that possesses rheopectic properties, becoming more viscous under applied pressure; the synovial fluid in diarthrotic joints becomes thick the moment shear is applied in order to protect the joint and subsequently, thins to normal viscosity instantaneously to resume its lubricating function between shocks.
- nutrient and waste transportation — the fluid supplies oxygen and nutrients and removes carbon dioxide and metabolic wastes from the chondrocytes in the surrounding cartilage
- molecular sieving - pressure within the joint forces hyaluronan in the fluid against the synovial membrane forming a barrier against cells migrating into, or fluid migrating out of, the joint space. This function is dependent on the molecular weight of the hyaluronan.
Composition
Synovial fluid contains lubricin as a second lubricating component, secreted by synovial fibroblasts. Chiefly, it is responsible for so-called boundary-layer lubrication, which reduces friction between opposing surfaces of cartilage. There also is some evidence that it helps regulate synovial cell growth.
It also contains phagocytic cells that remove microbes and the debris that results from normal wear and tear in the joint.
Clinical significance
Collection
Synovial fluid may be collected by syringe in a procedure termed arthrocentesis, also known as joint aspiration.Classification
Synovial fluid may be classified into normal, noninflammatory, inflammatory, septic, and hemorrhagic:Normal | Noninflammatory | Inflammatory | Septic | Bleeding | |
Volume | <3.5 | >3.5 | >3.5 | >3.5 | >3.5 |
Viscosity | High | High | Low | Mixed | Low |
Clarity | Clear | Clear | Cloudy | Opaque | Mixed |
Color | Colorless/straw | Straw/yellow | Yellow | Mixed | Red |
WBC/mm3 | <200 | <2,000 | 5,000-75,000 | >50,000 | Similar to blood level |
Polys | <25 | <25 | 50-70 | >70 | Similar to blood level |
Gram stain | Negative | Negative | Negative | Often positive | Negative |
Glucose concentration in synovial fluid is nearly equal to serum.
;Synovial fluid viscosity
Normal:
- Normal
- Traumatic arthritis
- Degenerative arthritis
- Pigmented villonodular synovitis
- Systemic lupus erythematosus
- Rheumatic fever
- Rheumatoid arthritis
- Gout
- Pyogenic arthritis
- Tubercular arthritis
- Less of lubrication in joints
Pathology
- Noninflammatory
- * Osteoarthritis, degenerative joint disease
- * Trauma
- * Rheumatic fever
- * Chronic gout or pseudogout
- * Scleroderma
- * Polymyositis
- * Systemic lupus erythematosus
- * Erythema nodosum
- * Neuropathic arthropathy
- * Sickle-cell disease
- * Hemochromatosis
- * Acromegaly
- * Amyloidosis
- Inflammatory
- * Rheumatoid arthritis
- * Reactive arthritis
- * Psoriatic arthritis
- * Acute rheumatic fever
- * Acute gout or pseudogout
- * Scleroderma
- * Polymyositis
- * Systemic lupus erythematosus
- * Ankylosing spondylitis
- * Inflammatory bowel disease arthritis
- * Infection including Lyme disease
- * Acute crystal synovitis
- Septic
- * Pyogenic bacterial infection
- * Septic arthritis
- Hemorrhagic
- * Trauma
- * Tumors
- * Hemophilia/coagulopathy
- * Scurvy
- * Ehlers-Danlos syndrome
- * Neuropathic arthropathy
Analysis
The cytological and biochemical analysis of human synovial fluid began around 1940 using cadaver-derived fluid and comparing characteristics to those of, for instance, bovine synovial fluid.
Chemistry
The mucin clot test is a very old approach to determining if an inflammatory infiltrate is present. In this test, acetic acid is added to the synovial fluid specimen. In a normal specimen, this should lead to a congealing of the hyaluronic acid, forming a 'mucin clot.' If inflammation is present, a mucin clot is not formed.Lactate is elevated in septic arthritis, usually above 250 mg/dL.
Complement factors are decreased in rheumatoid arthritis and lupus arthritis.
Microscopy
Microscopic analysis of synovial fluid is performed to evaluate for cell count and crystals. Crystals include monosodium urate, calcium pyrophosphate, hydroxyapatite and corticosteroid crystals.Monosodium urate crystals are seen in gout or gouty arthritis and appear as needle-shaped negatively birefringent crystals varying in length from 2 to 20 μm. With negative birefringence, the crystals appear yellow in parallel light and blue with perpendicular light.
Calcium pyrophosphate crystals are seen in pseudogout. These crystals are rod-shaped or rhomboids varying in length from 2 to 20 μm and with positive birefringence.
Hydroxyapatite crystals are small and negatively birefringent. They are usually only detectable with an Alizarin Red S stain.
Corticosteroid crystals may be seen following therapeutic corticosteroid injection into the joint space. They appear blunt, jagged, and show variable birefringence.
Cracking joints
When the two articulating surfaces of a synovial joint are separated from one other, the volume within the joint capsule is increased and a negative pressure results. The volume of synovial fluid within the joint is insufficient to fill the expanding volume of the joint and gases dissolved in the synovial fluid are liberated and quickly fill the empty space, leading to the rapid formation of a bubble. This process is known as cavitation. Cavitation in synovial joints results in a high frequency 'cracking' sound.Etymology and pronunciation
The term synovia came to English around 1640 from New Latin, where it was coined perhaps by Paracelsus from Greek ' "with" and Latin ' "egg" and because it resembles egg white in consistency and external appearance.The term synovium is a much more recent pseudo-Latin coinage for what is less confusingly called the synovial membrane. It is not recorded in general dictionaries, and medical dictionaries only explain its meaning, not its etymology, but it is apparently derived from the term synovia, i.e. the obfuscated etymology of mixed Greek and Latin elements of the singular term synovia was misunderstood and the word was erroneously reinterpreted as the plural of the previously non-existent term synovium. If one insists on using this pseudo-Latin term synovium for the synovial membrane, the non-Latinate plural synoviums is better and less confusing than synovia.