In contrast with application languages, system programming languages typically offer more-direct access to the physical hardware of the machine: an archetypical system programming language in this sense was BCPL. System programming languages often lack built-in input/output facilities because a system-software project usually develops its own I/O mechanisms or builds on basic monitor I/O or screen management facilities. The distinction between languages used for system programming and application programming became blurred over time with the widespread popularity of PL/I, C and Pascal.
History
The earliest system software was written in assembly language primarily because there was no alternative, but also for reasons including efficiency of object code, compilation time, and ease of debugging. Application languages such as FORTRAN were used for system programming, although they usually still required some routines to be written in assembly language.
Mid-level languages
Mid-level languages "have much of the syntax and facilities of a higher level language, but also provide direct access in the language to machine features." The earliest of these was ESPOL on Burroughs mainframes in about 1960, followed by Niklaus Wirth's PL360, which had the general syntax of ALGOL 60 but which statements directly manipulated CPU registers and memory. Other languages in this category include MOL-360 and PL/S. As an example, a typical PL360 statement is R9 := R8 and R7 shll 8 or R6, signifying that registers 8 and 7 should be and'ed together, the result shifted left 8 bits, the result of that or'ed with the contents of register 6, and the final result placed into register 9.
Higher-level languages
While PL360 is at the semantic level of assembly language, another kind of system programming language operates at a higher semantic level, but has specific extensions designed to make the language suitable for system programming. An early example of this kind of language is LRLTRAN, which extended Fortran with features for character and bit manipulation, pointers, and directly addressed jump tables. Subsequently, languages such as C were developed, where the combination of features was sufficient to write system software, and a compiler could be developed that generated efficient object programs on modest hardware. Such a language generally omits features that cannot be implemented efficiently, and adds a small number of machine-dependent features needed to access specific hardware abilities; inline assembly code, such as C's asm statement, is often used for this purpose. Although many such languages were developed, C and C++ are the ones which survived. System Programming Language is also the name of a specific language on the HP 3000 computer series, used for its operating systemHP Multi-Programming Executive, and other parts of its system software.