TIFF
Tagged Image File Format, abbreviated TIFF or TIF, is a computer file format for storing raster graphics images, popular among graphic artists, the publishing industry, and photographers. TIFF is widely supported by scanning, faxing, word processing, optical character recognition, image manipulation, desktop publishing, and page-layout applications. The format was created by Aldus Corporation for use in desktop publishing. It published the latest version 6.0 in 1992, subsequently updated with an Adobe Systems copyright after the latter acquired Aldus in 1994. Several Aldus or Adobe technical notes have been published with minor extensions to the format, and several specifications have been based on TIFF 6.0, including TIFF/EP, TIFF/IT, TIFF-F and TIFF-FX.
History
TIFF was created as an attempt to get desktop scanner vendors of the mid-1980s to agree on a common scanned image file format, in place of a multitude of proprietary formats. In the beginning, TIFF was only a binary image format, because that was all that desktop scanners could handle. As scanners became more powerful, and as desktop computer disk space became more plentiful, TIFF grew to accommodate grayscale images, then color images. Today, TIFF, along with JPEG and PNG, is a popular format for deep-color images.The first version of the TIFF specification was published by Aldus Corporation in the autumn of 1986 after two major earlier draft releases. It can be labeled as Revision 3.0. It was published after a series of meetings with various scanner manufacturers and software developers. In April 1987 Revision 4.0 was released and it contained mostly minor enhancements. In October 1988 Revision 5.0 was released and it added support for palette color images and LZW compression.
Features and options
TIFF is a flexible, adaptable file format for handling images and data within a single file, by including the header tags defining the image's geometry. A TIFF file, for example, can be a container holding JPEG and PackBits compressed images. A TIFF file also can include a vector-based clipping path. The ability to store image data in a lossless format makes a TIFF file a useful image archive, because, unlike standard JPEG files, a TIFF file using lossless compression may be edited and re-saved without losing image quality. This is not the case when using the TIFF as a container holding compressed JPEG. Other TIFF options are layers and pages.TIFF offers the option of using LZW compression, a lossless data-compression technique for reducing a file's size. Use of this option was limited by patents on the LZW technique until their expiration in 2004.
The TIFF 6.0 specification consists of the following parts:
- Introduction
- Part 1: Baseline TIFF
- Part 2: TIFF Extensions
- Part 3: Appendices
Part 1: Baseline TIFF
The following is an incomplete list of required Baseline TIFF features:
Multiple subfiles
TIFF readers must be prepared for multiple/multi-page images per TIFF file, although they are not required to actually do anything with images after the first one.There may be more than one Image File Directory in a TIFF file. Each IFD defines a subfile. One use of subfiles is to describe related images, such as the pages of a facsimile document. A Baseline TIFF reader is not required to read any IFD beyond the first one.
Strips
A baseline TIFF image is composed of one or more strips. A strip is a subsection of the image composed of one or more rows. Each strip may be compressed independently of the entire image, and each begins on a byte boundary. If the image height is not evenly divisible by the number of rows in the strip, the last strip may contain fewer rows. If strip definition tags are omitted, the image is assumed to contain a single strip.Compression
Baseline TIFF readers must handle the following three compression schemes:- No compression
- CCITT Group 3 1-Dimensional Modified Huffman RLE
- PackBits compression - a form of run-length encoding
Image types
Byte order
Every TIFF file begins with a two-byte indicator of byte order: "II
" for little-endian or "MM
" for big-endian byte ordering. The next two-byte word contains the format version number, which has always been 42 for every version of TIFF.All words, double words, etc., in the TIFF file are assumed to be in the indicated byte order. The TIFF 6.0 specification states that compliant TIFF readers must support both byte orders ; writers may use either.
Other TIFF fields
TIFF readers must be prepared to encounter and ignore private fields not described in the TIFF specification. TIFF readers must not refuse to read a TIFF file if optional fields do not exist.Part 2: TIFF Extensions
Many TIFF readers support tags additional to those in Baseline TIFF, but not every reader supports every extension. As a consequence, Baseline TIFF features became the lowest common denominator for TIFF. Baseline TIFF features are extended in TIFF Extensions but extensions can also be defined in private tags.The TIFF Extensions are formally known as TIFF 6.0, Part 2: TIFF Extensions. Here are some examples of TIFF extensions defined in TIFF 6.0 specification:
Compression
- CCITT T.4 bi-level encoding
- CCITT T.6 bi-level encoding
- LZW Compression scheme
- JPEG-based compression uses the DCT introduced in 1974 by N. Ahmed, T. Natarajan and K. R. Rao; see Reference 1 in Discrete cosine transform. For more details see .
Image types
- CMYK Images
- YCbCr Images
- HalftoneHints
- Tiled Images
- CIE L*a*b* Images
Image trees
Tiles
A TIFF image may also be composed of a number of tiles. All tiles in the same image have the same dimensions and may be compressed independently of the entire image, similar to strips. Tiled images are part of TIFF 6.0, Part 2: TIFF Extensions, so the support for tiled images is not required in Baseline TIFF readers.Other extensions
According to TIFF 6.0 specification, all TIFF files using proposed TIFF extensions that are not approved by Adobe as part of Baseline TIFF should be either not called TIFF files or should be marked some way so that they will not be confused with mainstream TIFF files.Private tags
Developers can apply for a block of "private tags" to enable them to include their own proprietary information inside a TIFF file without causing problems for file interchange. TIFF readers are required to ignore tags that they do not recognize, and a registered developer's private tags are guaranteed not to clash with anyone else's tags or with the standard set of tags defined in the specification. Private tags are numbered in the range 32,768 and higher.Private tags are reserved for information meaningful only for some organization, or for experiments with a new compression scheme within TIFF. Upon request, the TIFF administrator will allocate and register one or more private tags for an organization, to avoid possible conflicts with other organizations. Organizations and developers are discouraged from choosing their own tag numbers arbitrarily, because doing so could cause serious compatibility problems. However, if there is little or no chance that TIFF files will escape a private environment, organizations and developers are encouraged to consider using TIFF tags in the "reusable" 65,000–65,535 range. There is no need to contact Adobe when using numbers in this range.
Internet Media Type
The MIME type image/tiff without an application parameter is used for Baseline TIFF 6.0 files or to indicate that it is not necessary to identify a specific subset of TIFF or TIFF extensions. The optional "application" parameter is defined for image/tiff to identify a particular subset of TIFF and TIFF extensions for the encoded image data, if it is known. According to RFC 3302, specific TIFF subsets or TIFF extensions used in the application parameter must be published as an RFC.MIME type image/tiff-fx is based on TIFF 6.0 with TIFF Technical Notes TTN1 and TTN2. It is used for Internet fax compatible with the ITU-T Recommendations for Group 3 black-and-white, grayscale and color fax.
TIFF Compression Tag
The TIFF Tag 259 stores the information about the Compression method. The default value is 1 = no compression.Most TIFF writers and TIFF readers support only some TIFF compression schemes. Here are some examples of used TIFF compression schemes:
Tag value | Compression scheme | Lossy/ | Specification | Description | Image types | Usage and support |
000116 | - | Lossless | TIFF 6.0 | Baseline TIFF | All | |
000216 | CCITT Group 3 1-Dimensional Modified Huffman run-length encoding | Lossless | TIFF 6.0 | Baseline TIFF; compression based on ITU-T T.4 | Black and white | |
000316 | CCITT T.4 bi-level encoding as specified in section 4, Coding, of | Lossless | TIFF 6.0 | TIFF 6.0 Extensions; compression based on ITU-T T.4 | Black and white | |
000416 | CCITT T.6 bi-level encoding as specified in section 2 of | Lossless | TIFF 6.0 | TIFF 6.0 extensions; compression based on ITU-T T.6 | Black and white | |
000516 | Lempel–Ziv–Welch | Lossless | TIFF 6.0 | TIFF 6.0 Extensions; first defined in TIFF 5 ; a patented compression algorithm, but the patents expired in 2003 and 2004 | All | |
000616 | JPEG | Lossy | TIFF 6.0 | TIFF 6.0 Extensions; first defined in TIFF 6 ; obsolete, should never be written. | Continuous-tone | |
000716 | JPEG | Lossy | TIFF 6 Technote2 | Technote2 supersedes old-style JPEG compression; it is a TIFF 6.0 extension. | Continuous-tone | |
000816 | Deflate, Adobe variant | Lossless | TIFF Specification Supplement 2 | RFC 1950, RFC 1951, Adobe Photoshop TIFF Technical Notes; it is a TIFF 6.0 extension. | All | |
000916 | JBIG, per | Lossless | TIFF-FX | RFC 2301, RFC 3949 | Black and white | |
000A16 | JBIG, per | Lossless | TIFF-FX | RFC 2301, RFC 3949 | Black and white | |
7FFE16 | NeXT RLE 2-bit greyscale encoding | Proprietary | ||||
800516 | PackBits | Lossless | TIFF 6.0 | Baseline TIFF | All | |
802916 | ThunderScan RLE 4-bit encoding | Proprietary | Black and white | |||
807F16 | RasterPadding in continuous tone or monochrome picture | Lossless | TIFF/IT | ISO 12639 | ||
808016 | RLE for line work | Lossless | TIFF/IT | ISO 12639 | ||
808116 | RLE for high-resolution continuous-tone | Lossless | TIFF/IT | ISO 12639 | ||
808216 | RLE for binary line work | Lossless | TIFF/IT | ISO 12639 | ||
80B216 | Deflate, PKZIP variant | Lossless | Proprietary | According to TIFF Specification Supplement 2 it should be considered obsolete but reading is recommended | All | |
80B316 | Kodak DCS | Proprietary | ||||
876516 | JBIG | LibTiff | Black and white | |||
879816 | JPEG2000 | Proprietary | Includes a complete JP2 file inside a TIFF file, not recommended. Introduced by Leadtools. | |||
879916 | Nikon NEF Compressed | Proprietary | ||||
879B16 | JBIG2 | Lossless, lossy | TIFF-FX Extension Set 1.0 | Abandoned IETF draft from 2001 |
BigTIFF
The TIFF file formats use 32-bit offsets, which limits file size to around 4 GiB. Some implementations even use a signed 32-bit offset, running into issues around 2 GiB. BigTIFF is a TIFF variant file format which uses 64-bit offsets and supports much larger files. The BigTIFF file format specification was implemented in 2007 in development releases of LibTIFF version 4.0, which was finally released as stable in December 2011. Support for BigTIFF file formats by applications is limited.Digital preservation
Adobe holds the copyright on the TIFF specification along with the two supplements that have been published. These documents can be found on the Adobe TIFF Resources page. The Fax standard in RFC 3949 is based on these TIFF specifications.TIFF files that strictly use the basic "tag sets" as defined in TIFF 6.0 along with restricting the compression technology to the methods identified in TIFF 6.0 and are adequately tested and verified by multiple sources for all documents being created can be used for storing documents. Commonly seen issues encountered in the content and document management industry associated with the use of TIFF files arise when the structures contain proprietary headers, are not properly documented, and/or contain "wrappers" or other containers around the TIFF datasets, and/or include improper compression technologies, or those compression technologies are not properly implemented.
Variants of TIFF can be used within document imaging and content/document management systems using CCITT Group IV 2D compression which supports black-and-white images, among other compression technologies that support color. When storage capacity and network bandwidth was a greater issue than commonly seen in today's server environments, high-volume storage scanning, documents were scanned in black and white to conserve storage capacity.
The inclusion of the SampleFormat tag in TIFF 6.0 allows TIFF files to handle advanced pixel data types, including integer images with more than 8 bits per channel and floating point images. This tag made TIFF 6.0 a viable format for scientific image processing where extended precision is required. An example would be the use of TIFF to store images acquired using scientific CCD cameras that provide up to 16 bits per photosite of intensity resolution. Storing a sequence of images in a single TIFF file is also possible, and is allowed under TIFF 6.0, provided the rules for multi-page images are followed.
TIFF/IT
TIFF/IT is used to send data for print-ready pages that have been designed on high-end prepress systems. The TIFF/IT specification describes a multiple-file format, which can describe a single page per file set. TIFF/IT files are not interchangeable with common TIFF files.The goals in developing TIFF/IT were to carry forward the original IT8 magnetic-tape formats into a medium-independent version. TIFF/IT is based on Adobe TIFF 6.0 specification and both extends TIFF 6, by adding additional tags, and restricts, it by limiting some tags and the values within tags. Not all valid TIFF/IT images are valid TIFF 6.0 images.
TIFF/IT defines image-file formats for encoding color continuous-tone picture images, color line art images, high-resolution continuous-tone images, monochrome continuous-tone images, binary picture images, binary line-art images, screened data, and images of composite final pages.
There is no MIME type defined for TIFF/IT. The MIME type image/tiff should not be used for TIFF/IT files, because TIFF/IT does not conform to Baseline TIFF 6.0 and the widely deployed TIFF 6.0 readers cannot read TIFF/IT. The MIME type image/tiff without an application parameter is used for Baseline TIFF 6.0 files or to indicate that it is not necessary to identify a specific subset of TIFF or TIFF extensions. The application parameter should be used with image/tiff to distinguish TIFF extensions or TIFF subsets. According to RFC 3302, specific TIFF subsets or TIFF extensions must be published as an RFC. There is no such RFC for TIFF/IT. There is also no plan by the ISO committee that oversees TIFF/IT standard to register TIFF/IT with either a parameter to image/tiff or as new separate MIME type.
TIFF/IT files
TIFF/IT consists of a number of different files and it cannot be created or opened by common desktop applications. TIFF/IT-P1 file sets usually consist of the following files:- Final Page
- Continuous Tone image
- Line Work image
- High resolution Continuous-tone files
- Monochrome continuous-tone Picture images
- Binary Picture images
- Binary Line-art images
- Screened Data
The primary color space for this standard is CMYK, but also other color spaces and the use of ICC Profiles are supported.
TIFF/IT compression
TIFF/IT makes no provision for compression within the file structure itself, but there are no restrictions.LW files use a specific compression scheme known as Run-length encoding for LW. HC files also use a specific Run-length encoding for HC. The TIFF/IT P1 specs do not allow use of compression within the CT file.
The following is a list of defined TIFF/IT compression schemes:
TIFF/IT P1
The ISO 12639:1998 introduced TIFF/IT-P1 - a direct subset of the full TIFF/IT standard. This subset was developed on the ground of the mutual realization by both the standards and the software development communities that an implementation of the full TIFF/IT standard by any one vendor was both unlikely, and unnecessary. Almost all TIFF/IT files in digital advertising were distributed as TIFF/IT-P1 file sets in 2001. When people talk about TIFF/IT, they usually mean the P1 standard.Here are some of the restrictions on TIFF/IT-P1 :
- Uses CMYK only
- It is pixel interleaved
- Has a single choice of image orientation
- Has a single choice of dot range
- Restricted compression methods
TIFF/IT P2
Because TIFF/IT P1 had a number of limitations, an extended format was developed. The ISO 12639:2004 introduced a new extended conformance level - TIFF/IT-P2. TIFF/IT-P2 added a number of functions to TIFF/IT-P1 like:- CMYK spot colors only
- Support for the compression of CT and BP data
- Support for multiple LW and CT files in a single file
- Support for copydot files through a new file type called SD
- There was some effort to create a possibility to concatenate FP, LW, and CT files into a single file called the GF file, but this was not defined in a draft version of ISO 12639:2004.
Private tags
The TIFF/IT specification preserved the TIFF possibility for developers to utilize private tags. The TIFF/IT specification is very precise regarding how these private tags should be treated - they should be parsed, but ignored.Private tags in the TIFF/IT-P1 specification were originally intended to provide developers with ways to add specific functionality for specific applications. Private tags can be used by developers to preserve specific printing values or other functionality. Private tags are typically labelled with tag numbers greater than or equal to 32768.
All private tags must be requested from Adobe and registered.
In 1992, the DDAP developed their requirement statement for digital ad delivery. This was presented to ANSI-accredited CGATS for development of an accredited file format standard for the delivery of digital ads. CGATS reviewed their alternatives for this purpose and TIFF seemed like the ideal candidate, except for the fact that it could not handle certain required functionalities. CGATS asked Aldus for a block of their own TIFF private tags in order to implement what eventually became TIFF/IT. For example, the ability to identify the sequence of the colors is handled by tag 34017 - the Color Sequence Tag.
TIFF/IT was created to satisfy the need for a transport-independent method of encoding raster data in the IT8.1,
IT8.2 and IT8.5 standards.
Standards
TIFF/IT was defined in ANSI IT8.8–1993 standard in 1993 and later revised in the International Standard ISO 12639:1998 - Prepress digital data exchange – Tag image file format for image technology . The ISO standard replaces ANSI IT8.8–1993. It specifies a media-independent means for prepress electronic data exchange.The ISO 12639:2004 standard for TIFF/IT superseded the ISO 12639:1998. It was also later extended in ISO 12639:2004 / Amd. 1:2007 - Use of JBIG2-Amd2 compression in TIFF/IT.