Ternary computing is commonly implemented in terms of balanced ternary, which uses the three digits −1, 0, and +1. The negative value of any balanced ternary digit can be obtained by replacing every + with a − and vice versa. It is easy to subtract a number by inverting the + and − digits and then using normal addition. Balanced ternary can express negative values as easily as positive ones, without the need for a leading negative sign as with unbalanced numbers. These advantages make some calculations more efficient in ternary than binary. Considering that digit signs are mandatory, and nonzero digits are magnitude 1 only, notation that drops the '1's and use only zero and the + − signs is more concise than if 1's are included.
Unbalanced ternary
Ternary computing implemented in terms of unbalanced ternary, which uses the three digits 0, 1, 2. The original 0 and 1 are explained as an ordinary Binary computer, but instead uses 2 as leakage current. The world's first unbalanced ternary semiconductor design on a large wafer was implemented by the research team led by Kim Kyung-rok at Ulsan National Institute of Science and Technology in South Korea, which will help development of low power and high computing microchips in the future. This research theme was selected as one of the future projects funded by Samsung in 2017, published on July 15, 2019.
Potential future applications
With the advent of mass-produced binary components for computers, ternary computers have diminished in significance. However, Donald Knuth argues that they will be brought back into development in the future to take advantage of ternary logic's elegance and efficiency. One possible way this could happen is by combining an optical computer with the ternary logic system. A ternary computer using fiber optics could use dark as 0 and two orthogonal polarizations of light as 1 and −1. IBM also reports infrequently on ternary computing topics, but it is not actively engaged in it. The Josephson junction has been proposed as a balanced ternary memory cell, using circulating superconducting currents, either clockwise, counterclockwise, or off. "The advantages of the proposed memory circuit are capability of high speed computation, low power consumption and very simple construction with fewer elements due to the ternary operation." In 2009, a quantum computer was proposed which uses a quantum ternary state, a qutrit, rather than the typical qubit.
In Robert A. Heinlein's novel Time Enough for Love, the sapient computers of Secundus, the planet on which part of the framing story is set, including Minerva, use an unbalanced ternary system. Minerva, in reporting a calculation result, says "three hundred forty one thousandsix hundred forty... the original ternary readout is unit pair pair comma unit nil nil comma unit pair pair comma unit nil nil point nil". Virtual Adepts in the roleplaying game use ternary computers. In Howard Tayler's webcomic Schlock Mercenary, every modern computer is a ternary computer. AIs use the extra digit as "maybe" in boolean operations, thus having a much more intimate understanding of fuzzy logic than is possible with binary computers. The Conjoiners, in Alastair Reynolds' Revelation Space series, use ternary logic to program their computers and nanotechnology devices.