Therapeutic drug monitoring


Therapeutic drug monitoring is a branch of clinical chemistry and clinical pharmacology that specializes in the measurement of medication levels in blood. Its main focus is on drugs with a narrow therapeutic range, i.e. drugs that can easily be under- or overdosed. TDM aimed at improving patient care by individually adjusting the dose of drugs for which clinical experience or clinical trials have shown it improved outcome in the general or special populations. It can be based on a a priori pharmacogenetic, demographic and clinical information, and/or on the a posteriori measurement of blood concentrations of drugs or biological surrogate or end-point markers of effect.
There are numerous variables that influence the interpretation of drug concentration data: time, route and dose of drug given, time of blood sampling, handling and storage conditions, precision and accuracy of the analytical method, validity of pharmacokinetic models and assumptions, co-medications and, last but not least, clinical status of the patient.
Many different professionals are involved with the various elements of drug concentration monitoring, which is a truly multidisciplinary process. Because failure to properly carry out any one of the components can severely affect the usefulness of using drug concentrations to optimize therapy, an organized approach to the overall process is critical.

''A priori'' therapeutic drug monitoring

A priori TDM consists of determining the initial dose regimen to be given to a patient, based on clinical endpoint and on established population pharmacokinetic-pharmacodynamic relationships. These relationships help to identify sub-populations of patients with different dosage requirements, by utilizing demographic data, clinical findings, clinical chemistry results, and/or, when appropriate, pharmacogenetic characteristics.

''A posteriori'' therapeutic drug monitoring

The concept of a posteriori TDM corresponds to the usual meaning of TDM in medical practice, which refers to the readjustment of the dosage of a given treatment in response to the measurement of an appropriate marker of drug exposure or effect. TDM encompasses all aspects of this feedback control, namely:
In pharmacotherapy, many medications are used without monitoring of blood levels, as their dosage can generally be varied according to the clinical response that a patient gets to that substance. For certain drugs, this is impracticable, while insufficient levels will lead to undertreatment or resistance, and excessive levels can lead to toxicity and tissue damage.
Indications in favor of therapeutic drug monitoring include:
TDM determinations are also used to detect and diagnose poisoning with drugs, should the suspicion arise.
Examples of drugs widely analysed for therapeutic drug monitoring:
TDM increasingly proposed for a number of therapeutic drugs, e.g. many antibiotics, small molecule tyrosine kinase inhibitors and other targeted anticancer agents, TNF inhibitors and other biological agents, antifungal agents, antiretroviral agents used in HIV infection, psychiatric drugs etc.

Practice of therapeutic drug monitoring

Automated analytical methods such as enzyme multiplied immunoassay technique or fluorescence polarization immunoassay are widely available in medical laboratories for drugs frequently measured in practice. Nowadays, most other drugs can be readily measured in blood or plasma using versatile methods such as liquid chromatography–mass spectrometry or gas chromatography–mass spectrometry, which progressively replaced high-performance liquid chromatography. Yet, TDM is not limited to the provision of precise and accurate concentration measurement results, it also involves appropriate medical interpretation, based on robust scientific knowledge.
The interpretation of a drug concentration result goes through the following stages :
  1. Determine whether the observed concentration is in the “normal range” expected under the dosage administered, taking into account the patient's individual characteristics. This requires referring to population pharmacokinetic studies of the drug in consideration.
  2. Determine whether the patient's concentration profile is close to the “exposure target” associated with the best trade-off between probability of therapeutic success and risk of toxicity. This refers to clinical pharmacodynamic knowledge describing dose-concentration-response relatinships among treated patients.
  3. If the observed concentration is plausible but far from the suitable level, determine how to adjust the dosage to drive the concentration curve close to target. Several approaches exist for this, from the easiest “rule of three” to sophisticated computer-assisted calculations implementing Bayesian inference algorithms based on population pharmacokinetics.
Ideally, the usefulness of a TDM strategy should be confirmed through an evidence-based approach involving the performance of well-designed controlled clinical trials. In practice however, TDM has undergone formal clinical evaluation only for a limited number of drugs to date, and much of its development rests on empirical foundations.
Point-of-care tests for an easy performance of TDM at the medical practice are under elaboration.