Time dilation
Time dilation is a difference in the elapsed time measured by two clocks, either due to them having a velocity relative to each other, or by there being a gravitational potential difference between their locations. After compensating for varying signal delays due to the changing distance between an observer and a moving clock, the observer will measure the moving clock as ticking slower than a clock that is at rest in the observer's own reference frame. A clock that is close to a massive body will record less elapsed time than a clock situated further from the said massive body.
These predictions of the theory of relativity have been repeatedly confirmed by experiment, and they are of practical concern, for instance in the operation of satellite navigation systems such as GPS and Galileo. Time dilation has also been the subject of science fiction works, as it technically provides the means for forward time travel.
History
Time dilation by the Lorentz factor was predicted by several authors at the turn of the 20th century. Joseph Larmor, at least for electrons orbiting a nucleus, wrote "... individual electrons describe corresponding parts of their orbits in times shorter for the system in the ratio :". Emil Cohn specifically related this formula to the rate of clocks. In the context of special relativity it was shown by Albert Einstein that this effect concerns the nature of time itself, and he was also the first to point out its reciprocity or symmetry. Subsequently, Hermann Minkowski introduced the concept of proper time which further clarified the meaning of time dilation.Velocity time dilation
indicates that, for an observer in an inertial frame of reference, a clock that is moving relative to them will be measured to tick slower than a clock that is at rest in their frame of reference. This case is sometimes called special relativistic time dilation. The faster the relative velocity, the greater the time dilation between one another, with the rate of time reaching zero as one approaches the speed of light. This causes massless particles that travel at the speed of light to be unaffected by the passage of time.Theoretically, time dilation would make it possible for passengers in a fast-moving vehicle to advance further into the future in a short period of their own time. For sufficiently high speeds, the effect is dramatic. For example, one year of travel might correspond to ten years on Earth. Indeed, a constant 1 g acceleration would permit humans to travel through the entire known Universe in one human lifetime.
With current technology severely limiting the velocity of space travel, however, the differences experienced in practice are minuscule: after 6 months on the International Space Station, orbiting Earth at a speed of about 7,700 m/s, an astronaut would have aged about 0.005 seconds less than those on Earth. The cosmonauts Sergei Krikalev and Sergei Avdeyev both experienced time dilation of about 20 milliseconds compared to time that passed on Earth.
Simple inference of velocity time dilation
Time dilation can be inferred from the observed constancy of the speed of light in all reference frames dictated by the second postulate of special relativity.This constancy of the speed of light means that, counter to intuition, speeds of material objects and light are not additive. It is not possible to make the speed of light appear greater by moving towards or away from the light source.
Consider then, a simple clock consisting of two mirrors and, between which a light pulse is bouncing. The separation of the mirrors is and the clock ticks once each time the light pulse hits either of the mirrors.
In the frame in which the clock is at rest, the light pulse traces out a path of length and the period of the clock is divided by the speed of light:
From the frame of reference of a moving observer traveling at the speed relative to the resting frame of the clock, the light pulse is seen as tracing out a longer, angled path. Keeping the speed of light constant for all inertial observers, requires a lengthening of the period of this clock from the moving observer's perspective. That is to say, in a frame moving relative to the local clock, this clock will appear to be running more slowly. Straightforward application of the Pythagorean theorem leads to the well-known prediction of special relativity:
The total time for the light pulse to trace its path is given by
The length of the half path can be calculated as a function of known quantities as
Elimination of the variables and from these three equations results in
which expresses the fact that the moving observer's period of the clock is longer than the period in the frame of the clock itself.
Reciprocity
Given a certain frame of reference, and the "stationary" observer described earlier, if a second observer accompanied the "moving" clock, each of the observers would perceive the other's clock as ticking at a slower rate than their own local clock, due to them both perceiving the other to be the one that is in motion relative to their own stationary frame of reference.Common sense would dictate that, if the passage of time has slowed for a moving object, said object would observe the external world's time to be correspondingly sped up. Counterintuitively, special relativity predicts the opposite. When two observers are in motion relative to each other, each will measure the other's clock slowing down, in concordance with them being in motion relative to the observer's frame of reference.
While this seems self-contradictory, a similar oddity occurs in everyday life. If two persons A and B observe each other from a distance, B will appear small to A, but at the same time A will appear small to B. Being familiar with the effects of perspective, there is no contradiction or paradox in this situation.
The reciprocity of the phenomenon also leads to the so-called twin paradox where the aging of twins, one staying on Earth and the other embarking on a space travel, is compared, and where the reciprocity suggests that both persons should have the same age when they reunite. On the contrary, at the end of the round-trip, the traveling twin will be younger than their sibling on Earth. The dilemma posed by the paradox, however, can be explained by the fact that the traveling twin must markedly accelerate in at least three phases of the trip, while the other will only experience negligible acceleration, due to rotation and revolution of Earth. During the acceleration phases of the space travel, time dilation is not symmetric.
Experimental testing
Doppler effect
- The stated purpose by Ives and Stilwell of these experiments was to verify the time dilation effect, predicted by Larmor–Lorentz ether theory, due to motion through the ether using Einstein's suggestion that Doppler effect in canal rays would provide a suitable experiment. These experiments measured the Doppler shift of the radiation emitted from cathode rays, when viewed from directly in front and from directly behind. The high and low frequencies detected were not the classically predicted values
- Hasselkamp, Mondry, and Scharmann measured the Doppler shift from a source moving at right angles to the line of sight. The most general relationship between frequencies of the radiation from the moving sources is given by:
- In 2010 time dilation was observed at speeds of less than 10 meters per second using optical atomic clocks connected by 75 meters of optical fiber.
Moving particles
- A comparison of muon lifetimes at different speeds is possible. In the laboratory, slow muons are produced; and in the atmosphere, very fast moving muons are introduced by cosmic rays. Taking the muon lifetime at rest as the laboratory value of 2.197 μs, the lifetime of a cosmic ray produced muon traveling at 98% of the speed of light is about five times longer, in agreement with observations. An example is Rossi and Hall, who compared the population of cosmic-ray-produced muons at the top of a mountain to that observed at sea level.
- The lifetime of particles produced in particle accelerators appears longer due to time dilation. In such experiments the "clock" is the time taken by processes leading to muon decay, and these processes take place in the moving muon at its own "clock rate", which is much slower than the laboratory clock. This is routinely taken into account in particle physics, and many dedicated measurements have been performed. For instance, in the muon storage ring at CERN the lifetime of muons circulating with γ = 29.327 was found to be dilated to 64.378 μs, confirming time dilation to an accuracy of 0.9 ± 0.4 parts per thousand.
Proper time and Minkowski diagram
The proper time between two events is indicated by a clock present at both events. It is invariant, i.e., in all inertial frames it is agreed that this time is indicated by that clock. Interval df is therefore the proper time of clock C, and is shorter with respect to the coordinate times ef=dg of clocks B and A in S. Conversely, also proper time ef of B is shorter with respect to time if in S′, because event e was measured in S′ already at time i due to relativity of simultaneity, long before C started to tick.
From that it can be seen, that the proper time between two events indicated by an unaccelerated clock present at both events, compared with the synchronized coordinate time measured in all other inertial frames, is always the minimal time interval between those events. However, the interval between two events can also correspond to the proper time of accelerated clocks present at both events. Under all possible proper times between two events, the proper time of the unaccelerated clock is maximal, which is the solution to the twin paradox.
Derivation and formulation
In addition to the light clock used above, the formula for time dilation can be more generally derived from the temporal part of the Lorentz transformation. Let there be two events at which the moving clock indicates and, thusSince the clock remains at rest in its inertial frame, it follows, thus the interval is given by
where Δt is the time interval between two co-local events for an observer in some inertial frame, known as the proper time, Δt′ is the time interval between those same events, as measured by another observer, inertially moving with velocity v with respect to the former observer, v is the relative velocity between the observer and the moving clock, c is the speed of light, and the Lorentz factor is
Thus the duration of the clock cycle of a moving clock is found to be increased: it is measured to be "running slow". The range of such variances in ordinary life, where even considering space travel, are not great enough to produce easily detectable time dilation effects and such vanishingly small effects can be safely ignored for most purposes. It is only when an object approaches speeds on the order of 30,000 km/s that time dilation becomes important.
Hyperbolic motion
In special relativity, time dilation is most simply described in circumstances where relative velocity is unchanging. Nevertheless, the Lorentz equations allow one to calculate proper time and movement in space for the simple case of a spaceship which is applied with a force per unit mass, relative to some reference object in uniform motion, equal to g throughout the period of measurement.Let t be the time in an inertial frame subsequently called the rest frame. Let x be a spatial coordinate, and let the direction of the constant acceleration as well as the spaceship's velocity be parallel to the x-axis. Assuming the spaceship's position at time being and the velocity being v0 and defining the following abbreviation
the following formulas hold:
Position:
Velocity:
Proper time as function of coordinate time:
In the case where v = v0 = 0 and τ = τ0 = 0 the integral can be expressed as a logarithmic function or, equivalently, as an inverse hyperbolic function:
As functions of the proper time of the ship, the following formulae hold:
Position:
Velocity:
Coordinate time as function of proper time:
Clock hypothesis
The clock hypothesis is the assumption that the rate at which a clock is affected by time dilation does not depend on its acceleration but only on its instantaneous velocity. This is equivalent to stating that a clock moving along a path measures the proper time, defined by:The clock hypothesis was implicitly included in Einstein's original 1905 formulation of special relativity. Since then, it has become a standard assumption and is usually included in the axioms of special relativity, especially in the light of experimental verification up to very high accelerations in particle accelerators.
Gravitational time dilation
Gravitational time dilation is experienced by an observer that, at a certain altitude within a gravitational potential well, finds that their local clocks measure less elapsed time than identical clocks situated at higher altitude.Gravitational time dilation is at play e.g. for ISS astronauts. While the astronauts' relative velocity slows down their time, the reduced gravitational influence at their location speeds it up, although at a lesser degree. Also, a climber's time is theoretically passing slightly faster at the top of a mountain compared to people at sea level. It has also been calculated that due to time dilation, the core of the Earth is 2.5 years younger than the crust. "A clock used to time a full rotation of the earth will measure the day to be approximately an extra 10 ns/day longer for every km of altitude above the reference geoid." Travel to regions of space where extreme gravitational time dilation is taking place, such as near a black hole, could yield time-shifting results analogous to those of near-lightspeed space travel.
Contrarily to velocity time dilation, in which both observers measure the other as aging slower, gravitational time dilation is not reciprocal. This means that with gravitational time dilation both observers agree that the clock nearer the center of the gravitational field is slower in rate, and they agree on the ratio of the difference.
Experimental testing
- In 1959 Robert Pound and Glen A. Rebka measured the very slight gravitational redshift in the frequency of light emitted at a lower height, where Earth's gravitational field is relatively more intense. The results were within 10% of the predictions of general relativity. In 1964, Pound and J. L. Snider measured a result within 1% of the value predicted by gravitational time dilation.
- In 2010 gravitational time dilation was measured at the earth's surface with a height difference of only one meter, using optical atomic clocks.
Combined effect of velocity and gravitational time dilation
Relativistic time dilation effects for the solar system and the earth can be modeled very precisely by the Schwarzschild solution to the Einstein field equations. In the Schwarzschild metric, the interval is given by
where
The coordinate velocity of the clock is given by
The coordinate time is the time that would be read on a hypothetical "coordinate clock" situated infinitely far from all gravitational masses, and stationary in the system of coordinates. The exact relation between the rate of proper time and the rate of coordinate time for a clock with a radial component of velocity is
where
The above equation is exact under the assumptions of the Schwarzschild solution. It reduces to velocity time dilation equation in the presence of motion and absence of gravity, i.e.. It reduces to gravitational time dilation equation in the absence of motion and presence of gravity, i.e..
Experimental testing
- Hafele and Keating, in 1971, flew caesium atomic clocks east and west around the Earth in commercial airliners, to compare the elapsed time against that of a clock that remained at the U.S. Naval Observatory. Two opposite effects came into play. The clocks were expected to age more quickly than the reference clock, since they were in a higher gravitational potential for most of the trip. But also, contrastingly, the moving clocks were expected to age more slowly because of the speed of their travel. From the actual flight paths of each trip, the theory predicted that the flying clocks, compared with reference clocks at the U.S. Naval Observatory, should have lost 40±23 nanoseconds during the eastward trip and should have gained 275±21 nanoseconds during the westward trip. Relative to the atomic time scale of the U.S. Naval Observatory, the flying clocks lost 59±10 nanoseconds during the eastward trip and gained 273±7 nanoseconds during the westward trip. In 2005, the National Physical Laboratory in the United Kingdom reported their limited replication of this experiment. The NPL experiment differed from the original in that the caesium clocks were sent on a shorter trip, but the clocks were more accurate. The reported results are within 4% of the predictions of relativity, within the uncertainty of the measurements.
- The Global Positioning System can be considered a continuously operating experiment in both special and general relativity. The in-orbit clocks are corrected for both special and general relativistic time dilation effects [|as described above], so that they run at the same rate as clocks on the surface of the Earth.
Footnotes