Tin-silver-copper


Tin-silver-copper, is a lead-free alloy commonly used for electronic solder. The tin-silver-copper alloy has been the prevailing alloy system used to replace tin-lead because it is near eutectic, with adequate thermal fatigue properties, strength, and wettability. Lead-free solder is gaining much attention as the environmental effects of lead in industrial products is recognized, and as a result of Europe’s RoHS legislation to remove lead and other hazardous materials from electronics. Japanese electronics companies have also looked at Pb-free solder for its industrial advantages.
Typical alloys are 3–4% silver, 0.5–0.7% copper, and the balance tin. For example, the common "SAC305" solder is 3.0% silver and 0.5% copper. Cheaper alternatives with less silver are used in some applications, such as SAC105 and SAC0307, at the expense of a somewhat higher melting point.

Applications

SAC alloys are the main choice for lead-free surface-mount technology assembly in the electronics industry. SMT is a process where components of circuit assemblies are mounted directly onto the surface of a printed circuit board and soldered in place. SMT has largely replaced “through-hole technology” where components are fitted with wire leads into holes in the circuit board.

History

In 2000, there were several lead-free assemblies and chip products initiatives being driven by the Japan Electronic Industries Development Association and Waste Electrical and Electronic Equipment Directive. These initiatives resulted in tin-silver-copper alloys being considered and tested as lead-free solder ball alternatives for array product assemblies.
In 2003, tin-silver-copper was being used as a lead-free solder. However, its performance was criticized because it left a dull, irregular finish and it was difficult to keep the copper content under control. In 2005, tin-silver-copper alloys constituted approximately 65% of lead-free alloys used in the industry and this percentage has been increasing. Large companies such as Sony and Intel switched from using lead-containing solder to a tin-silver-copper alloy.

Constraints and tradeoffs

The process requirements for SAC solders and Sn-Pb solders are different both materially and logistically for electronic assembly. In addition, the reliability of Sn-Pb solders is well established, while SAC solders are still undergoing study,.
One important difference is that Pb-free soldering requires higher temperatures and increased process control to achieve the same results as that of the tin-lead method. The melting point of SAC alloys is 217–220 °C, or about 34 °C higher than the melting point of the eutectic tin-lead alloy. This requires peak temperatures in the range of 235–245 °C to achieve wetting and wicking.
Some of the components susceptible to SAC assembly temperatures are electrolytic capacitors, connectors, opto-electronics, and older style plastic components. However, a number of companies have started offering 260 °C compatible components to meet the requirements of Pb-free solders. iNEMI has proposed that a good target for development purposes would be around 260 °C.
Also, SAC solders are alloyed with a larger number of metals so there is the potential for a far wider variety of intermetallics to be present in a solder joint. These more complex compositions can result in solder joint microstructures that are not as thoroughly studied as current tin-lead solder microstructures.
These concerns are magnified by the unintentional use of lead-free solders in either processes designed solely for tin-lead solders or environments where material interactions are poorly understood. For example, the reworking of a tin-lead solder joint with Pb-free solder. These mixed-finish possibilities could negatively impact the solder’s reliability.

Advantages

SAC solders have outperformed high-Pb solders C4 joints in ceramic ball grid array systems, which are ball-grid arrays with a ceramic substrate. The CBGA showed consistently better results in thermal cycling for Pb-free alloys. The findings also show that SAC alloys are proportionately better in thermal fatigue as the thermal cycling range decreases. SAC performs better than Sn-Pb at the less extreme cycling conditions.
Another advantage of SAC is that it appears to be more resistant to gold embrittlement than Sn-Pb. In test results, the strength of the joints is substantially higher for the SAC alloys than the Sn-Pb alloy. Also, the failure mode is changed from a partially brittle joint separation to a ductile tearing with the SAC.