Tolerant sequence
In mathematical logic, a tolerant sequence is a sequence
of formal theories such that there are consistent extensions
of these theories with each interpretable in. Tolerance naturally generalizes from sequences of theories to trees of theories. Weak interpretability can be shown to be a special, binary case of tolerance.
This concept, together with its dual concept of cotolerance, was introduced by Japaridze in 1992, who also proved that, for Peano arithmetic and any stronger theories with effective axiomatizations, tolerance is equivalent to -consistency.