Topoisomerase inhibitor
Topoisomerase inhibitors are chemical compounds that block the action of topoisomerases, which are enzymes that control the changes in DNA structure by catalyzing the breaking and rejoining of the phosphodiester backbone of DNA strands during the normal cell cycle.
In recent years, topoisomerases have become popular targets for cancer chemotherapy treatments. It is thought that topoisomerase inhibitors block the ligation step of the cell cycle, generating single and double stranded breaks that harm the integrity of the genome. Introduction of these breaks subsequently leads to apoptosis and cell death.
Topoisomerase inhibitors can also function as antibacterial agents. Quinolones have this function. Quinolones bind to these enzymes and prevent them from decatenation replicating DNA.
Classification
Topoisomerase inhibitors are often divided according to the enzyme they inhibit:- Topoisomerase I inhibitors: irinotecan, topotecan, camptothecin, diflomotecan and lamellarin D all target type IB topoisomerases,
- Topoisomerase II inhibitors: etoposide, teniposide, doxorubicin, daunorubicin, mitoxantrone, amsacrine, ellipticines, aurintricarboxylic acid, and HU-331, a quinone synthesized from cannabidiol.
Use of topoisomerase inhibitors for antineoplastic treatments may lead to secondary neoplasms because of DNA damaging properties of the compounds. Also plant derived polyphenols shows signs of carcinogenity, especially in fetuses and neonates who do not detoxify the compounds sufficiently. An association between high intake of tea during pregnancy and elevated risk of childhood malignant central nervous system tumours has been found.
Type I topoisomerase inhibitors
Human DNA topoisomerase I is an essential enzyme that relaxes DNA supercoiling during replication and transcription. Top1 generates DNA single-strand breaks that allow rotation of the cleaved strand around the double helix axis. Top1 also re-ligates the cleaved strand to reestablish intact duplex DNA.The Top1-DNA intermediates, known as cleavage complexes, are transient and at low levels under normal circumstances. However, treatment with Top1 inhibitors, such as the camptothecins, stabilize the cleavable complexes, prevent DNA religation and induce lethal DNA strand breaks. Cancer cells are selectively sensitive to the generation of these DNA lesions.
Top1 is a validated target for the treatment of human cancers. Camptothecins are among the most effective anticancer agents recently introduced into clinical practice. In this regard, the camptothecin derivative topotecan is approved by the U.S. FDA for the treatment of ovarian and lung cancer. Another camptothecin derivative irinotecan is approved for the treatment of colon cancer.
There are, however, certain clinical limitations of the camptothecin derivatives. These include: 1) spontaneous inactivation to a lactone form in blood, 2) rapid reversal of the trapped cleavable complex after drug removal, requiring prolonged infusions, 3) resistance of cancer cells overexpressing membrane transporters, and 4) dose-limiting side effects of diarrhea and neutropenia.
To circumvent these limitations, Dr. Mark Cushman at Purdue University and Dr. Yves Pommier at the National Cancer Institute developed the non-camptothecin family of indenoisoquinoline inhibitors of Top1. In contrast to the camptothecins, the indenoisoquinolines are: 1) chemically stable in blood, 2) inhibitors of Top1 cleavable complexes at distinct sites, 3) not substrates of membrane transporters, and 4) more effective as anti-tumor agents in animal models. The preclinical and IND package filed with the US Food and Drug Administration along with complete GMP production supporting the lead molecule are components of the published and non-published information covered by the license agreement with Purdue Research Foundation the National Cancer Center and Linus Oncology, Inc.
Linus Oncology has licensed the intellectual property that covers the development of these and related indenoisoquinoline derivatives. Phase I Study in Adults With Relapsed Solid Tumors and Lymphomas is ongoing.
Indenoisoquinolines form a ternary complexes of Top1 and DNA and act as interfacial inhibitors.
There are several advantages of these novel non-camptothecin Top1 inhibitors as compared to the FDA-approved camptothecin analogs:
- They are synthetic and chemically stable compounds
- The Top1 cleavage sites trapped by the indenoisoquinolines have different genomic locations, implying differential targeting of cancer cell genomes
- The Top1 cleavage complexes trapped by indenoisoquinolines are more stable, indicative of prolonged drug action
- The indenoisoquinolines are seldom or not used as substrates for the multidrug resistance efflux pumps
Type II topoisomerase inhibitors
These inhibitors are split into two main classes: topoisomerase poisons, which target the topoisomerase-DNA complex, and topoisomerase inhibitors, which disrupt catalytic turnover.Topo II poisons
Examples of topoisomerase poisons include the following:- eukaryotic type II topoisomerase inhibitors : amsacrine, etoposide, etoposide phosphate, teniposide and doxorubicin. These drugs are anti-cancer therapies.
- bacterial type II topoisomerase inhibitors : fluoroquinolones. These are antibacterials and include fluoroquinolones such as ciprofloxacin.
Poisons of type IIA topoisomerases can target prokaryotic and eukaryotic enzymes preferentially, making them attractive drug candidates. Ciprofloxacin targets prokaryotes in excess of a thousandfold more than it targets eukaryotic topo IIs. Despite this, Ciprofloxacin is a potent dose-dependent type II poison, which is why it causes mass destruction of tissue cells. This poor safety profile is one reason the FDA has advised fluoroquinolones only be used as a treatment of last resort.
Topo II inhibitors
These inhibitors target the N-terminal ATPase domain of topo II and prevent topo II from turning over.Examples of topoisomerase inhibitors include :
- ICRF-193. The structure of this compound bound to the ATPase domain was solved by Classen showing that the drug binds in a non-competitive manner and locks down the dimerization of the ATPase domain.
- genistein.
[Synthetic lethality] with deficient ''WRN">Werner syndrome ATP-dependent helicase">WRN'' expression
The analysis of 630 human primary tumors in 11 tissues shows that hypermethylation of the WRN CpG island promoter is a common event in tumorigenesis. WRN is repressed in about 38% of colorectal cancers and non-small-cell lung carcinomas and in about 20% or so of stomach cancers, prostate cancers, breast cancers, non-Hodgkin lymphomas and chondrosarcomas, plus at significant levels in the other cancers evaluated. The WRN protein helicase is important in homologous recombinational DNA repair and also has roles in non-homologous end joining DNA repair and base excision DNA repair.
A 2006 retrospective study, with long clinical follow-up, was made of colon cancer patients treated with the topoisomerase inhibitor irinotecan. In this study, 45 patients had hypermethylated WRN gene promoters and 43 patients had unmethylated WRN promoters. Irinotecan was more strongly beneficial for patients with hypermethylated WRN promoters than for those with unmethylated WRN promoters. Thus, a topoisomerase inhibitor appeared to be especially synthetically lethal with deficient WRN expression. Further evaluations have also indicated synthetic lethality of deficient expression of WRN and topoisomerase inhibitors.