Let X be a compact Hausdorff topological space. For any finite open coverC of X, letH be the logarithm of the smallest number of elements of C that coverX. For two covers C and D, let be their common refinement, which consists of all the non-empty intersections of a set from C with a set from D, and similarly for multiple covers. For any continuous mapf: X → X, the following limit exists: Then the topological entropy of f, denoted h, is defined to be the supremum of H over all possible finite covers C of X.
Interpretation
The parts of C may be viewed as symbols that describe the position of a point x in X: all points x ∈ Ci are assigned the symbol Ci. Imagine that the position of x is measured by a certain device and that each part of C corresponds to one possible outcome of the measurement. The integer then represents the minimal number of "words" of length n needed to encode the points of X according to the behavior of their first n − 1 iterates under f, or, put differently, the total number of "scenarios" of the behavior of these iterates, as "seen" by the partition C. Thus the topological entropy is the average amount of information needed to describe long iterations of the map f.
Definition of Bowen and Dinaburg
This definition uses a metric on X. This is a narrower definition than that of Adler, Konheim, and McAndrew, as it requires the additional metric structure on the topological space. However, in practice, the Bowen-Dinaburg topological entropy is usually much easier to calculate. Let be a compact metric space and f: X → X be a continuous map. For each natural numbern, a new metric dn is defined on X by the formula Given any ε > 0 and n ≥ 1, two points of X are ε-close with respect to this metric if their first n iterates are ε-close. This metric allows one to distinguish in a neighborhood of an orbit the points that move away from each other during the iteration from the points that travel together. A subset E of X is said to be -separated if each pair of distinct points of E is at least ε apart in the metric dn. Denote by N the maximum cardinality of an -separated set. The topological entropy of the map f is defined by
Interpretation
Since X is compact, N is finite and represents the number of distinguishable orbit segments of length n, assuming that we cannot distinguish points within ε of one another. A straightforward argument shows that the limit defining h always exists in the extended real line. This limit may be interpreted as the measure of the average exponential growth of the number of distinguishable orbit segments. In this sense, it measures complexity of the topological dynamical system. Rufus Bowen extended this definition of topological entropy in a way which permits X to be non-compact under the assumption that the map f is uniformly continuous.
Let be an expansive homeomorphism of a compact metric space and let be a topological generator. Then the topological entropy of relative to is equal to the topological entropy of, i.e.
Let be a continuous transformation of a compact metric space, let be the measure-theoretic entropy of with respect to and let be the set of all -invariant Borel probability measures on X. Then the variational principle for entropy states that
In general the maximum of the quantities over the set is not attained, but if additionally the entropy map is upper semicontinuous, then a measure of maximal entropy - meaning a measure in with - exists.
If has a unique measure of maximal entropy, then is ergodic with respect to.
Examples
Let by denote the full two-sided k-shift on symbols. Let denote the partition of into cylinders of length 1. Then is a partition of for all and the number of sets is respectively. The partitions are open covers and is a topological generator. Hence