Torsional vibration


Torsional vibration is angular vibration of an object—commonly a shaft along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars. Torsional vibrations can lead to seat vibrations or noise at certain speeds. Both reduce the comfort.
In ideal power generation, or transmission, systems using rotating parts, not only the torques applied or reacted are "smooth" leading to constant speeds, but also the rotating plane where the power is generated and the plane it is taken out are the same. In reality this is not the case. The torques generated may not be smooth or the component being driven may not react to the torque smoothly, and the power generating plane is normally at some distance to the power takeoff plane. Also, the components transmitting the torque can generate non-smooth or alternating torques. Because no material can be infinitely stiff, these alternating torques applied at some distance on a shaft cause twisting vibration about the axis of rotation.

Crankshaft torsional vibration

Torsional vibration is a concern in the crankshafts of internal combustion engines because it could break the crankshaft itself; shear-off the flywheel; or cause driven belts, gears and attached components to fail, especially when the frequency of the vibration matches the torsional resonant frequency of the crankshaft. Causes of the torsional vibration are attributed to several factors.
If torsional vibration is not controlled in a crankshaft it can cause failure of the crankshaft or any accessories that are being driven by the crankshaft.
This potentially damaging vibration is often controlled by a torsional damper that is located at the front nose of the crankshaft. There are two main types of torsional dampers.
Torsional vibrations of drive systems usually result in a significant fluctuation of the rotational speed of the rotor of the driving electric motor. Such oscillations of the angular speed superimposed on the average rotor rotational speed cause more or less severe perturbation of the electromagnetic flux and thus additional oscillations of the electric currents in the motor windings. Then, the generated electromagnetic torque is also characterized by additional variable in time components which induce torsional vibrations of the drive system. According to the above, mechanical vibrations of the drive system become coupled with the electrical vibrations of currents in the motor windings. Such a coupling is often complicated in character and thus computationally troublesome. Because of this reason, till present majority of authors used to simplify the matter regarding mechanical vibrations of drive systems and electric current vibrations in the motor windings as mutually uncoupled. Then, the mechanical engineers applied the electromagnetic torques generated by the electric motors as ‘a priori‘ assumed excitation functions of time or of the rotor-to-stator slip, e.g. in paper usually basing on numerous experimental measurements carried out for the given electric motor dynamic behaviours. For this purpose, by means of measurement results, proper approximate formulas have been developed, which describe respective electromagnetic external excitations produced by the electric motor,. However, the electricians thoroughly modelled electric current flows in the electric motor windings, but they usually reduced the mechanical drive system to one or seldom to at most a few rotating rigid bodies, as e.g. in In many cases, such simplifications yield sufficiently useful results for engineering applications, but very often they can lead to remarkable inaccuracies, since many qualitative dynamic properties of the mechanical systems, e.g. their mass distribution, torsional flexibility and damping effects, are being neglected. Thus, an influence of drive system vibratory behaviour on the electric machine rotor angular speed fluctuation, and in this way on the electric current oscillations in the rotor and stator windings, can not be investigated with a satisfactory precision.
Mechanical vibrations and deformations are phenomena associated with an operation of majority of railway vehicle drivetrain structures. The knowledge about torsional vibrations in transmission systems of railway vehicles is of a great importance in the fields dynamics of mechanical systems. Torsional vibrations in the railway vehicle drive train are generated by several phenomena. Generally, these phenomena are very complex and they can be divided into two main parts.
An interaction of the adhesion forces has nonlinear features which are related to the creep value and strongly depends on the wheel-rail zone condition and track geometry. In many modern mechanical systems torsional structural deformability plays an important role. Often the study of railway vehicle dynamics using the rigid multibody methods without torsionally deformable elements are used This approach does not allow to analyse self-excited vibrations which have an important influence on the wheel-rail longitudinal interaction.
A dynamic modelling of the electrical drive systems coupled with elements of a driven machine or vehicle is particularly important when the purpose of such modelling is to obtain an information about the transient phenomena of system operation, like a run-up, run-down and loss of adhesion in the wheel-rail zone. The modelling of an electromechanical interaction between the electric driving motor and the machine as well as to an influence of the self-excited torsional vibrations in the drive system.

Measuring torsional vibration on physical systems

The most common way to measure torsional vibration is the approach of using equidistant pulses over one shaft revolution. Dedicated shaft encoders as well as gear tooth pickup transducers can generate these pulses. The resulting encoder pulse train is converted into either a digital rpm reading or a voltage proportional to the rpm.
The use of a dual-beam laser is another technique that is used to measure torsional vibrations. The operation of the dual-beam laser is based on the difference in reflection frequency of two perfectly aligned beams pointing at different points on a shaft. Despite its specific advantages, this method yields a limited frequency range, requires line-of-sight from the part to the laser, and represents multiple lasers in case several measurement points need to be measured in parallel.

Torsional vibration software

There are many software packages that are capable of solving the torsional vibration system of equations. Torsional vibration specific codes are more versatile for design and system validation purposes and can produce simulation data that can readily compared to published industry standards. These codes make it easy to add system branches, mass-elastic data, steady-state loads, transient disturbances and many other items only a rotordynamicist would need. Torsional vibration specific codes: