Trajectory optimization


Trajectory optimization is the process of designing a trajectory that minimizes some measure of performance while satisfying a set of constraints. Generally speaking, trajectory optimization is a technique for computing an open-loop solution to an optimal control problem. It is often used for systems where computing the full closed-loop solution is not required, impractical or impossible. If a trajectory optimization problem can be solved at a rate given by the inverse of the Lipschitz constant, then it can be used iteratively to generate a closed-loop solution in the sense of Caratheodory. If only the first step of the trajectory is executed for an infinite-horizon problem, then this is known as Model Predictive Control.
Although the idea of trajectory optimization has been around for hundreds of years, it only became practical for real-world problems with the advent of the computer. Many of the original applications of trajectory optimization were in the aerospace industry, computing rocket and missile launch trajectories. More recently, trajectory optimization has also been used in a wide variety of industrial process and robotics applications.

History

Trajectory optimization first showed up in 1697, with the introduction of the Brachystochrone problem: find the shape of a wire such that a bead sliding along it will move between two points in the minimum time. The interesting thing about this problem is that it is optimizing over a curve, rather than a single number. The most famous of the solutions was computed using calculus of variations.
In the 1950s, the digital computer started to make trajectory optimization practical for solving real-world problems. The first optimal control approaches grew out of the calculus of variations, based on the research of Gilbert Ames Bliss and Bryson in America, and Pontryagin in Russia. Pontryagin's maximum principle is of particular note. These early researchers created the foundation of what we now call indirect methods for trajectory optimization.
Much of the early work in trajectory optimization was focused on computing rocket thrust profiles, both in a vacuum and in the atmosphere. This early research discovered many basic principles that are still used today.
Another successful application was the climb to altitude trajectories for the early jet aircraft. Because of the high drag associated with the transonic drag region and the low thrust of early jet aircraft, trajectory optimization was the key to maximizing climb to altitude performance. Optimal control based trajectories were responsible for some of the world records. In these situations, the pilot followed a Mach versus altitude schedule based on optimal control solutions.
One of the important early problems in trajectory optimization was that of the singular arc, where Pontryagin's maximum principle fails to yield a complete solution. An example of a problem with singular control is the optimization of the thrust of a missile flying at a constant altitude and which is launched at low speed. Here the problem is one of a bang-bang control at maximum possible thrust until the singular arc is reached. Then the solution to the singular control provides a lower variable thrust until burnout. At that point bang-bang control provides that the control or thrust go to its minimum value of zero. This solution is the foundation of the boost-sustain rocket motor profile widely used today to maximize missile performance.

Applications

There are a wide variety of applications for trajectory optimization, primarily in robotics: industry, manipulation, walking, path-planning, and aerospace. It can also be used for modeling and estimation.

Quadrotor helicopters

Trajectory optimization is often used to compute trajectories for quadrotor helicopters. These applications typically used highly specialized algorithms.
One interesting application shown by the is computing a trajectory that allows a quadrotor to fly through a hoop as it is thrown. Another, this time by the , involves two quadrotors tossing a pole back and forth between them, with it balanced like an inverted pendulum.

Manufacturing

Trajectory optimization is used in manufacturing, particularly for controlling chemical processes or computing the desired path for robotic manipulators.

Walking robots

There are a variety of different applications for trajectory optimization within the field of walking robotics. For example, one paper used trajectory optimization of bipedal gaits on a simple model to show that walking is energetically favorable for moving at a low speed and running is energetically favorable for moving at a high speed.
Like in many other applications, trajectory optimization can be used to compute a nominal trajectory, around which a stabilizing controller is built.
Trajectory optimization can be applied in detailed motion planning complex humanoid robots, such as Atlas.
Finally, trajectory optimization can be used for path-planning of robots with complicated dynamics constraints, using reduced complexity models.

Aerospace

For tactical missiles, the flight profiles are determined by the thrust and lift histories. These histories can be controlled by a number of means including such techniques as using an angle of attack command history or an altitude/downrange schedule that the missile must follow. Each combination of missile design factors, desired missile performance, and system constraints results in a new set of optimal control parameters.

Terminology

;Decision variables
;Trajectory optimization problem
;Parameter optimization
;Nonlinear program
;Indirect method
;Direct method
;Transcription
;Shooting method
;Collocation method
;Pseudospectral method
;Mesh
;Mesh refinement
;Multi-phase trajectory optimization problem

Trajectory optimization techniques

The techniques to any optimization problems can be divided into two categories: indirect and direct. An indirect method works by analytically constructing the necessary and sufficient conditions for optimality, which are then solved numerically. A direct method attempts a direct numerical solution by constructing a sequence of continually improving approximations to the optimal solution. Direct and indirect methods can be blended by an application of the covector mapping principle of Ross and Fahroo.
The optimal control problem is an infinite-dimensional optimization problem, since the decision variables are functions, rather than real numbers. All solution techniques perform transcription, a process by which the trajectory optimization problem is converted into a constrained parameter optimization problem. Generally, this constrained parameter optimization problem is a non-linear program, although in special cases it can be reduced to a quadratic program or linear program.

Single shooting

Single shooting is the simplest type of trajectory optimization technique. The basic idea is similar to how you would aim a cannon: pick a set of parameters for the trajectory, simulate the entire thing, and then check to see if you hit the target. The entire trajectory is represented as a single segment, with a single constraint, known as a defect constraint, requiring that the final state of the simulation match the desired final state of the system. Single shooting is effective for problems that are either simple or have an extremely good initialization. Both the indirect and direct formulation tend to have difficulties otherwise.

Multiple shooting

Multiple shooting is a simple extension to single shooting that renders it far more effective. Rather than representing the entire trajectory as a single simulation, the algorithm breaks the trajectory into many shorter segments, and a defect constraint is added between each. The result is large sparse non-linear program, which tends to be easier to solve than the small dense programs produced by single shooting.

Direct collocation

Direct collocation methods work by approximating the state and control trajectories using polynomial splines. These methods are sometimes referred to as direct transcription. Trapezoidal collocation is a commonly used low-order direct collocation method. The dynamics, path objective, and control are all represented using linear splines, and the dynamics are satisfied using trapezoidal quadrature. Hermite-Simpson Collocation is a common medium-order direct collocation method. The state is represented by a cubic-Hermite spline, and the dynamics are satisfied using Simpson quadrature.

Orthogonal collocation

Orthogonal collocation is technically a subset of direct collocation, but the implementation details are so different that it can reasonably be considered its own set of methods. Orthogonal collocation differs from direct collocation in that it typically uses high-order splines, and each segment of the trajectory might be represented by a spline of a different order. The name comes from the use of orthogonal polynomials in the state and control splines.

Pseudospectral collocation

Pseudospectral collocation, also known as global collocation, is a subset of orthogonal collocation in which the entire trajectory is represented by a single high-order orthogonal polynomial. As a side note: some authors use orthogonal collocation and pseudospectral collocation interchangeably. When used to solve a trajectory optimization problem whose solution is smooth, a pseudospectral method will achieve convergence.

Differential dynamic programming

, is a bit different than the other techniques described here. In particular, it does not cleanly separate the transcription and the optimization. Instead, it does a sequence of iterative forward and backward passes along the trajectory. Each forward pass satisfies the system dynamics, and each backward pass satisfies the optimality conditions for control. Eventually, this iteration converges to a trajectory that is both feasible and optimal.

Comparison of techniques

There are many techniques to choose from when solving a trajectory optimization problem. There is no best method, but some methods might do a better job on specific problems. This section provides a rough understanding of the trade-offs between methods.

Indirect vs. direct methods

When solving a trajectory optimization problem with an indirect method, you must explicitly construct the adjoint equations and their gradients. This is often difficult to do, but it gives an excellent accuracy metric for the solution. Direct methods are much easier to set up and solve, but do not have a built-in accuracy metric. As a result, direct methods are more widely used, especially in non-critical applications. Indirect methods still have a place in specialized applications, particularly aerospace, where accuracy is critical.
One place where indirect methods have particular difficulty is on problems with path inequality constraints. These problems tend to have solutions for which the constraint is partially active. When constructing the adjoint equations for an indirect method, the user must explicitly write down when the constraint is active in the solution, which is difficult to know a priori. One solution is to use a direct method to compute an initial guess, which is then used to construct a multi-phase problem where the constraint is prescribed. The resulting problem can then be solved accurately using an indirect method.

Shooting vs. collocation

Single shooting methods are best used for problems where the control is very simple. For example, a satellite mission planning problem where the only control is the magnitude and direction of an initial impulse from the engines.
Multiple shooting tends to be good for problems with relatively simple control, but complicated dynamics. Although path constraints can be used, they make the resulting nonlinear program relatively difficult to solve.
Direct collocation methods are good for problems where the accuracy of the control and the state are similar. These methods tend to be less accurate than others, but are particularly robust for problems with difficult path constraints.
Orthogonal collocation methods are best for obtaining high-accuracy solutions to problems where the accuracy of the control trajectory is important. Some implementations have trouble with path constraints. These methods are particularly good when the solution is smooth.

Mesh refinement: h vs. p

It is common to solve a trajectory optimization problem iteratively, each time using a discretization with more points. A h-method for mesh refinement works by increasing the number of trajectory segments along the trajectory, while a p-method increases the order of the transcription method within each segment.
Direct collocation methods tend to exclusively use h-method type refinement, since each method is a fixed order. Shooting methods and orthogonal collocation methods can both use h-method and p-method mesh refinement, and some use a combination, known as hp-adaptive meshing. It is best to use h-method when the solution is non-smooth, while a p-method is best for smooth solutions.

Software

Examples of trajectory optimization programs include:
A collection of low thrust trajectory optimization tools, including members of the Low Thrust Trajectory Tool set, can be found here: .