Triangulation station


A triangulation station, also known as a triangulation pillar, trigonometrical station, trigonometrical point, trig station, trig beacon, or trig point, and sometimes informally as a trig, is a fixed surveying station, used in geodetic surveying and other surveying projects in its vicinity. The nomenclature varies regionally: they are generally known as trigonometrical or triangulation stations in North America, trig points in the United Kingdom, trig pillars in Ireland, trig stations or points in Australia and New Zealand, and trig beacons in South Africa; triangulation pillar is the more formal term for the concrete columns found in the UK.

Use

The station is usually set up by a government with known coordinates and elevation published. Many stations are located on hilltops for the purposes of visibility. A graven metal plate on the top of a pillar may provide a mounting point for a theodolite or reflector.
Trigonometrical stations are grouped together to form a network of triangulation. Positions of all land boundaries, roads, railways, bridges and other infrastructure can be accurately located by the network, a task that is essential to the construction of modern infrastructure. Apart from the known stations set up by government, some temporary trigonometrical stations are set up near construction sites for monitoring the precision and progress of construction.
Some trigonometrical stations use the Global Positioning System for convenience; however, the accuracy depends on factors such as ionospheric and tropospheric propagation delay errors.
Although stations are no longer required for many surveying purposes, they remain useful to hikers as navigational aids. Trig points or Triangulation Pillars are another way of spotting the top of a mountain on a map. The symbol for a trig point is a small triangle. They are real concrete pillars that are placed at particular places which are usually the tops of hills or mountains.

Stations worldwide

Australia

A national geodetic survey and adjustment carried out in the early 1970s in Australia has left a legacy of trig stations, many consisting of a ground mark with a black quadripod supporting a white square disc above the ground mark. Sometimes these trig stations are clearly visible for many kilometers and useful for animals to see where a mountain is.

Hong Kong

Many trigonometrical stations were placed on hilltops around Hong Kong. They strongly resemble those used in other British colonial territories such as Australia, consisting of a white column topped with a black band.

Japan

In Japan, there are five classes of triangulation stations:
;Class 1
;Class 2
;Class 3
;Class 4
;Class 5

South Africa

South Africa has a network of approximately 28,000 trig beacons, established by the . These beacons are typically white-painted concrete pillars supporting black metal plates in a cross shape, installed on mountains, hills or tall buildings.

Spain

In Spain there are 11,000 triangulation stations, concrete buildings which typically consist of a cylinder 120 cm high and 30 cm diameter over a concrete cubic base.
They were erected by the Instituto Geográfico Nacional, usually painted in white, and can be marked with a metallic label with the warning: "The destruction of this sign is punishable by law."

United Kingdom

In the United Kingdom, trig points are typically concrete pillars and were erected by the Ordnance Survey.
The process of placing trig points on top of prominent hills and mountains began in 1935 to assist in the accurate retriangulation of Great Britain. The Ordnance Survey's first trig point was erected on 18 April 1936 near Cold Ashby, Northamptonshire. In low-lying or flat areas some trig points are only a few metres above sea level and one is even at −1 m. When all the trig points were in place, it was possible in clear weather to see at least two other trig points from any one trig point, but subsequent vegetation growth means that this is not necessarily still the case. Careful measurements of the angles between the lines-of-sight of the other trig points then allowed the construction of a system of triangles which could then be referenced back to a single baseline to construct a highly accurate measurement system that covered the entire country.
In most of the UK, trig points are truncated square concrete pyramids or obelisks tapering towards the top. On the top a brass plate with three arms and a central depression is fixed: it is used to mount and centre a theodolite used to take angular measurements to neighbouring trig points. A benchmark is usually set on the side, marked with the letters "O S B M" and the reference number of the trig point. Within and below the visible trig point, there are concealed reference marks whose National Grid References are precisely known. The standard trig point design is credited to Brigadier Martin Hotine, head of the Trigonometrical and Levelling Division of the Ordnance Survey. Many of them are now disappearing from the countryside as their function has largely been superseded by aerial photography and digital mapping using lasers and GPS. To quote from a page at the OS site: "Like an iceberg, there is more of trig pillar below the surface than above it." From the same source: "Today the receivers that make up the OS Net network are coordinated to an accuracy of just 3 mm over the entire length of Great Britain."