Two-stroke diesel engine


A two-stroke diesel engine is a Diesel engine that works by combining what is normally four cycles – intake, compression, combustion, and exhaust into only two strokes of the engine. It was invented by in 1899.
All diesel engines use compression ignition, a process by which fuel is injected after the air is compressed in the combustion chamber, thereby causing the fuel to self-ignite. By contrast, gasoline engines utilize the Otto cycle, or in some recent high-efficiency engines, the Atkinson cycle, in which fuel and air are mixed before entering the combustion chamber and then ignited by a spark plug.

History

According to the designer of the first operational Diesel engine,, Diesel never intended using the two-stroke principle for the Diesel engine. It is believed, that Hugo Güldner invented the two-stroke Diesel engine. He designed the first operational two-stroke Diesel engine in 1899, and he convinced MAN, Krupp and Diesel to fund building this engine with 10,000 each. Güldner's engine had a 175 mm work cylinder, and a 185 mm scavenging cylinder; both had a stroke of 210 mm. The indicated power output was 12 PS. In February 1900, this engine ran under its own power for the first time. However, with its actual power output of only 6.95 PS and high fuel consumption of 380 g·PS−1·h−1, it did not prove to be successful; Güldner's two-stroke Diesel engine project was abandoned in 1901.
In 1908, MAN Nürnberg offered single-acting piston two-stroke Diesel engines for marine use, the first double-acting piston engine from MAN Nürnberg was made in 1912 for an electric power plant. In collaboration with Blohm + Voss in Hamburg, MAN Nürnberg built the first double-acting piston two-stroke engine for marine use in 1913/1914. During World War I, MAN Nürnberg built a six-cylinder, double-acting piston, two-stroke Diesel engine with a rated power of 12,400 PS. MAN moved their two-stroke Diesel engine department from Nürnberg to Augsburg in 1919.
Charles F. Kettering and colleagues, working at the General Motors Research Corporation and GM's subsidiary Winton Engine Corporation during the 1930s, advanced the art and science of two-stroke diesel technology to yield engines with much higher power-to-weight ratios and output range than contemporary four-stroke diesels. The first mobile application of two-stroke diesel power was with the diesel streamliners of the mid-1930s and continued development work resulted in improved two-stroke diesels for locomotive and marine applications in the late 1930s. This work laid the foundation for the dieselisation of railroads in the 1940s and 1950s.

Two strokes

Two-stroke internal combustion engines are simpler mechanically than four-stroke engines, but more complex in thermodynamic and aerodynamic processes, according to SAE definitions. In a two-stroke engine, the four "cycles" of internal combustion engine theory occur in one revolution, 360 mechanical degrees, whereas in a four-stroke engine these occur in two complete revolutions, 720 mechanical degrees. In a two-stroke engine, more than one function occurs at any given time during the engine's operation.
In most EMD and GM two-stroke engines, very few parameters are adjustable and all the remaining ones are fixed by the mechanical design of the engines. The scavenging ports are open from 45 degrees before BDC, to 45 degrees after BDC. The remaining, adjustable, parameters have to do with exhaust valve and injection timing, they are established to maximize combustion gas exhaust and to maximize charge air intake. A single camshaft operates the poppet-type exhaust valves and the Unit injector, using three lobes: two lobes for exhaust valves.
Specific to EMD two-stroke engines :
Specific to GM two-stroke and related on-road/off-road/marine two-stroke engines:
*