Unified English Braille


Unified English Braille Code is an English language Braille code standard, developed to permit representing the wide variety of literary and technical material in use in the English-speaking world today, in uniform fashion.

Background on why the new encoding standard was developed

Standard 6-dot braille only provides 63 distinct characters, and thus, over the years a number of distinct rule-sets have been developed to represent literary text, mathematics, scientific material, computer software, the @ symbol used in email addresses, and other varieties of written material. Different countries also used differing encodings at various times: during the 1800s American Braille competed with English Braille, in the War of the Dots. As a result of the expanding need to represent technical symbolism, and divergence during the past 100 years across countries, braille users who desired to read or write a large range of material have needed to learn different sets of rules, depending on what kind of material they were reading at a given time. Rules for a particular type of material were often not compatible from one system to the next, so the reader would need to be notified as the text in a book moved from computer braille code for programming to Nemeth Code for mathematics to standard literary braille. Moreover, the braille rule-set used for math and computer science topics, and even to an extent braille for literary purposes, differed among various English-speaking countries.

Overview of the goals of UEB

Unified English Braille is intended to develop one set of rules, the same everywhere in the world, which could be applied across various types of English-language material. The notable exception to this unification is Music Braille, which UEB specifically does not encompass, because it is already well-standardized internationally. Unified English Braille is designed to be readily understood by people familiar with the literary braille, while also including support for specialized math and science symbols, computer-related symbols, foreign alphabets, and visual effects.
According to the original 1991 specification for UEB, the goals were:
Some goals were specially and explicitly called out as key objectives, not all of which are mentioned above:
Goals that were specifically not part of the UEB upgrade process were the ability to handle languages outside the Roman alphabet.

History of specification and adoption of UEB

Work on UEB formally began in 1991, and preliminary draft standard was published in March 1995, then upgraded several times thereafter. Unified English Braille was originally known as Unified Braille Code, with the English-specific nature being implied, but later the word "English" was formally incorporated into its name—Unified English Braille Code —and still more recently it has come to be called Unified English Braille. On April 2, 2004, the International Council on English Braille gave the go-ahead for the unification of various English braille codes. This decision was reached following 13 years of analysis, research, and debate. ICEB said that Unified English Braille was sufficiently complete for recognition as an international standard for English braille, which the seven ICEB member-countries could consider for adoption as their national code. South Africa adopted the UEB almost immediately. During the following year, the standard was adopted by Nigeria, Australia, and New Zealand. On April 24, 2010, the Canadian Braille Authority voted to adopt UEB, making Canada the fifth nation to adopt UEB officially. On October 21, 2011, the UK Association for Accessible Formats voted to adopt UEB as the preferred code in the UK. On November 2, 2012 the Braille Authority of North America became the sixth of the seven member-countries of the ICEB to officially adopt the UEB.

Controversy over math-notation in UEB

The major criticism against UEB is that it fails to handle mathematics or computer science as compactly as codes designed to be optimal for those disciplines. Besides requiring more space to represent and more time to read and write, the verbosity of UEB can make learning mathematics more difficult. Nemeth Braille, officially used in the United States since 1952, and as of 2002 the de facto standard for teaching and doing mathematics in braille in the US, was specifically invented to correct the cumbersomeness of doing mathematics in braille. However, although the Nemeth encoding standard was officially adopted by the JUTC of the US and the UK in the 1950s, in practice only the USA switched their mathematical braille to the Nemeth system, whereas the UK continued to use the traditional Henry Martyn Taylor coding for their braille mathematics. Programmers in the United States who write their programming codefiles in braille—as opposed to in ASCII text with use of a screenreader for example—tend to use Nemeth-syntax numerals, whereas programmers in the UK use yet another system. The key difference of Nemeth Braille compared to Taylor is that Nemeth uses "down-shifted" numerals from the fifth decade of the Braille alphabet, whereas UEB/Taylor uses the traditional 1800s approach with "up-shifted" numerals from the first decade of the Braille alphabet. Traditional 1800s Braille, and also UEB, require insertion of numeral-prefixes when speaking of numerals, which makes representing some mathematical equations 42% more verbose. As an alternative to UEB, there were proposals in 2001 and 2009, and most recently these were the subject of various technical workshops during 2012. Although UEB adopts some features of Nemeth, the final version of UEB mandates up-shifted numerals, which are the heart of the controversy. According to BANA, which adopted UEB in 2012, the official braille codes for the USA will be UEB and Nemeth Braille, despite the use of contradictory representation of numerals and arithmetical symbols in the UEB and Nemeth encodings. Thus, although UEB has officially been adopted in most English-speaking ICEB member-countries, in the USA the new encoding is not to be the sole encoding.
Another proposed braille-notation for encoding math is GS8/GS6, which was specifically invented in the early 1990s as an attempt to get rid of the "up-shifted" numerals used in UEB—see Gardner–Salinas Braille. GS6 implements "extra-dot" numerals from the fourth decade of the English Braille alphabet. GS8 expands the braille-cell from 2×3 dots to 2×4 dots, quadrupling the available codepoints from the traditional 64 up to 256, but in GS8 the numerals are still represented in the same way as in GS6.
Attempts to give the numerals their own distinct position in Braille are not new: the original 1829 specification by Louis Braille gave the numerals their own distinct symbols, with the modern digraph-based literary-braille approach mentioned as an optional fallback. However, after trying the system out in the classroom, the dashes used in the numerals—as well as several other rows of special characters—were found to be too difficult to distinguish from dot-pairs, and thus the typical digraph-based numerals became the official standard in 1837.

Implementation of UEB in English-speaking countries

As of 2013, with the majority of English-speaking ICEB member-countries having officially adopted UEB, there remain barriers to implementation and deployment. Besides ICEB member-nations, there are also many other countries with blind citizens that teach and use English: India, Hong Kong/China, Pakistan, the Philippines, and so on. Many of these countries use non-UEB math notation, for English-speaking countries specifically, versions of the Nemeth Code were widespread by 1990 in contrast to the similar-to-UEB-but-not-identical Taylor notation in 1990. Some countries in the Middle East used Nemeth and Taylor math-notations as of 1990, i.e. Iran and Saudi Arabia. As of 2013, it is unclear whether the English-using blind populations of various ICEB and non-ICEB nations will move to adopt the UEB, and if so, at what rate. Beyond official adoption rates in schools and by individuals, there are other difficulties. The vast majority of existing Braille materials, both printed and electronic, are in non-UEB encodings. Furthermore, other technologies that compete with braille are now ever-more-widely affordable. The percentage of blind children who are literate in braille is already declining—and even those who know some system tend not to know UEB, since that system is still very new. Still, as of 2012 many of the original goals for UEB have already been fully or partially accomplished: