Varicella zoster virus


Human alphaherpesvirus 3, usually referred to as the varicella-zoster virus, is one of nine herpesviruses known to infect humans. It causes chickenpox, a disease most commonly affecting children, teens, and young adults, and shingles in adults; shingles is rare in children. VZV is a worldwide pathogen known by many names: chickenpox virus, varicella virus, and zoster virus. VZV infections are species-specific to humans, but can survive in external environments for a few hours, maybe a day or two.
VZV multiplies in the lungs, and causes a wide variety of symptoms. After the primary infection, the virus goes dormant in the nerves, including the cranial nerve ganglia, dorsal root ganglia, and autonomic ganglia. Many years after the person has recovered from chickenpox, VZV can reactivate to cause neurological conditions.

Epidemiology

Primary varicella zoster virus infection results in chickenpox, which may result in complications including encephalitis, pneumonia, or bronchitis. Even when clinical symptoms of chickenpox have resolved, VZV remains dormant in the nervous system of the infected person , in the trigeminal and dorsal root ganglia. VZV enters through the respiratory system. Having an incubation period of 10–21 days, averaging at 14 days. Targeting the skin and peripheral nerve, the period of illness is from 3 to 4 days. 1–2 days before the rashes appear is when this virus is the most contagious. Some signs and symptoms are vesicles that fill with pus, rupture, and scab before healing. Lesions tend to stay towards the face, throat, and lower back sometimes on the chest and shoulders. Shingles usually stay located around the waist.
In about 10–20% of cases, VZV reactivates later in life, producing a disease known as shingles or herpes zoster. VZV can also infect the central nervous system, with a 2013 article reporting an incidence rate of 1.02 cases per 100,000 inhabitants in Switzerland, and an annual incidence rate of 1.8 cases per 100,000 inhabitants in Sweden.
Other serious complications of varicella zoster infection include postherpetic neuralgia, Mollaret's meningitis, zoster multiplex, and inflammation of arteries in the brain leading to stroke, myelitis, herpes ophthalmicus, or zoster sine herpete. In Ramsay Hunt syndrome, VZV affects the geniculate ganglion giving lesions that follow specific branches of the facial nerve. Symptoms may include painful blisters on the tongue and ear along with one sided facial weakness and hearing loss. If infected during initial stages of pregnancy severe damage to the fetus can take place. Reye’s syndrome can happen after initial infection, continuous vomiting and shows signs of brain dysfunction: extreme drowsiness or combative behavior. In some cases, death or coma can follow. Reye’s syndrome mostly affects children and teenagers, using aspirin during infection can increase this risk.

Morphology

VZV is closely related to the herpes simplex viruses, sharing much genome homology. The known envelope glycoproteins correspond with those in HSV; however, there is no equivalent of HSV gD. VZV also fails to produce the LAT that play an important role in establishing HSV latency. VZV virions are spherical and 180–200 nm in diameter. Their lipid envelope encloses the 100 nm nucleocapsid of 162 hexameric and pentameric capsomeres arranged in an icosahedral form. Its DNA is a single, linear, double-stranded molecule, 125,000 nt long. The capsid is surrounded by loosely associated proteins known collectively as the tegument; many of these proteins play critical roles in initiating the process of virus reproduction in the infected cell. The tegument is in turn covered by a lipid envelope studded with glycoproteins that are displayed on the exterior of the virion, each approximately 8 nm long.

Genomes

The genome was first sequenced in 1986. It is a linear duplex DNA molecule, a laboratory strain has 124,884 base pairs. The genome has 2 predominant isomers, depending on the orientation of the S segment, P and IS which are present with equal frequency for a total frequency of 90–95%. The L segment can also be inverted resulting in a total of four linear isomers. This is distinct from HSV's equiprobable distribution, and the discriminatory mechanism is not known. A small percentage of isolated molecules are circular genomes, about which little is known. There are at least 70 open reading frames in the genome.
There are at least five clades of this virus. Clades 1 and 3 include European/North American strains; clade 2 are Asian strains, especially from Japan; and clade 5 appears to be based in India. Clade 4 includes some strains from Europe but its geographic origins need further clarification.

Evolution

Commonality with HSV1 and HSV2 indicates a common ancestor; five genes do not have corresponding HSV genes. Relation with other human herpes viruses is less strong, but many homologues and conserved gene blocks are still found.
There are five principal clades and four genotypes that do not fit into these clades. The current distribution of these clades is Asia and Europe. Allocation of VZV strains to clades required sequence of whole virus genome. Practically all molecular epidemiological data on global VZV strains distribution are obtained with targeted sequencing of selected regions.
Phylogenetic analysis of VZV genomic sequences resolves wild-type strains into 9 genotypes. Complete sequences for M3 and M4 strains are unavailable, but targeted analyses of representative strains suggest they are stable, circulating VZV genotypes. Sequence analysis of VZV isolates identified both shared and specific markers for every genotype and validated a unified VZV genotyping strategy. Despite high genotype diversity no evidence for intra-genotypic recombination was observed. Five of seven VZV genotypes were reliably discriminated using only four single nucleotide polymorphisms present in ORF22, and the E1 and E2 genotypes were resolved using SNP located in ORF21, ORF22 or ORF50. Sequence analysis of 342 clinical varicella and zoster specimens from 18 European countries identified the following distribution of VZV genotypes: E1, 221 ; E2, 87 ; M1, 20 ; M2, 3 ; M4, 11. No M3 or J strains were observed. Of 165 clinical varicella and zoster isolates from Australia and New Zealand typed using this approach, 67 of 127 eastern Australian isolates were E1, 30 were E2, 16 were J, 10 were M1, and 4 were M2; 25 of 38 New Zealand isolates were E1, 8 were E2, and 5 were M1.
The mutation rate for synonymous and nonsynonymous mutation rates among the herpesviruses have been estimated at 1 × 10−7 and 2.7 × 10−8 mutations/site/year, respectively, based on the highly conserved gB gene.

Treatment

Within the human body it can be treated by a number of drugs and therapeutic agents including acyclovir for the chicken pox, famciclovir, valaciclovir for the shingles, zoster-immune globulin, and vidarabine. VZV immune globulin is also a treatment. Acyclovir is frequently used as the drug of choice in primary VZV infections, and beginning its administration early can significantly shorten the duration of any symptoms. However, reaching an effective serum concentration of acyclovir typically requires intravenous administration, making its use more difficult outside of a hospital.

Vaccination

A live attenuated VZV Oka/Merck strain vaccine is available and is marketed in the United States under the trade name Varivax. It was developed by Merck, Sharp & Dohme in the 1980s from the Oka strain virus isolated and attenuated by Michiaki Takahashi and colleagues in the 1970s. It was submitted to the US Food and Drug Administration for approval in 1990 and was approved in 1995. Since then, it has been added to the recommended vaccination schedules for children in Australia, the United States, and many other countries. Varicella vaccination has raised concerns in some that the immunity induced by the vaccine may not be lifelong, possibly leaving adults vulnerable to more severe disease as the immunity from their childhood immunization wanes. Vaccine coverage in the United States in the population recommended for vaccination is approaching 90%, with concomitant reductions in the incidence of varicella cases and hospitalizations and deaths due to VZV. So far, clinical data has proved that the vaccine is effective for over ten years in preventing varicella infection in healthy individuals, and when breakthrough infections do occur, illness is typically mild. In 2007, the Advisory Committee on Immunization Practices recommended a second dose of vaccine before school entry to ensure the maintenance of high levels of varicella immunity.
In 2006, the United States Food and Drug Administration approved Zostavax for the prevention of shingles. Zostavax is a more concentrated formulation of the Varivax vaccine, designed to elicit an immune response in older adults whose immunity to VZV wanes with advancing age. A systematic review by the Cochrane Library shows that Zostavax reduces the incidence of shingles by almost 50%.
Shingrix is a V. zoster vaccine developed by GlaxoSmithKline which was approved in the United States by the FDA in October 2017. The ACIP recommended Shingrix for adults over the age of 50, including those who have already received Zostavax. The committee voted that Shingrix is preferred over Zostavax for the prevention of zoster and related complications because phase 3 clinical data showed vaccine efficacy of >90% against shingles across all age groups, as well as sustained efficacy over a 4-year follow-up. Unlike Zostavax, which is given as a single shot, Shingrix is given as two intramuscular doses, two to six months apart.
A herpes-zoster subunit vaccine has shown to be immunogenic and safe in adults with human immunodeficiency virus.

History

Chickenpox-like rashes were recognised and described by ancient civilizations; the relationship between zoster and chickenpox was not realized until 1888.
It was in 1943 that Ruska noticed the similarity between virus particles isolated from the lesions of zoster and those from chickenpox.
In 1974 the first vaccine was introduced for chickenpox.