Virotherapy
Virotherapy is a treatment using biotechnology to convert viruses into therapeutic agents by reprogramming viruses to treat diseases. There are three main branches of virotherapy: anti-cancer oncolytic viruses, viral vectors for gene therapy and viral immunotherapy. These branches utilize three different types of treatment methods: gene overexpression, gene knockout, and suicide gene delivery. Gene overexpression adds genetic sequences that compensate for low to zero levels of needed gene expression. Gene knockout utilizes RNA methods to silence or reduce expression of disease-causing genes. Suicide gene delivery introduces genetic sequences that induce an apoptotic response in cells, usually to kill cancerous growths. In a slightly different context, virotherapy can also refer more broadly to the use of viruses to treat certain medical conditions by killing pathogens.
Oncolytic virotherapy
Oncolytic virotherapy is not a new idea – as early as the mid 1950s doctors were noticing that cancer patients who suffered a non-related viral infection, or who had been vaccinated recently, showed signs of improvement; this has been largely attributed to the production of interferon and tumour necrosis factors in response to viral infection, but oncolytic viruses are being designed that selectively target and lyse only cancerous cells.In the 1940s and 1950s, studies were conducted in animal models to evaluate the use of viruses in the treatment of tumours. In the 1940s–1950s some of the earliest human clinical trials with oncolytic viruses were started.
In 2015 the FDA approved the marketing of talimogene laherparepvec, a genetically engineered herpes virus, to treat melanoma lesions that cannot be operated on; it is injected directly into the lesion. As of 2016 there was no evidence that it extends the life of people with melanoma, or that it prevents metastasis. Two genes were removed from the virus – one that shuts down an individual cell's defenses, and another that helps the virus evade the immune system – and a gene for human GM-CSF was added. The drug works by replicating in cancer cells, causing them to burst; it was also designed to stimulate an immune response but as of 2016, there was no evidence of this. The drug was created and initially developed by BioVex, Inc. and was continued by Amgen, which acquired BioVex in 2011. It was the first oncolytic virus approved in the West.
Viral gene therapy
Viral gene therapy uses genetically engineered viral vectors to deliver therapeutic genes to cells with genetic malfunctions. Typically, the virus is administered to patients intravenously or by direct injection into target tissues. The molecular mechanisms of gene delivery and/or integration into cells vary based on the viral vector that is used.There are many targets of viral gene therapy. While some therapies target the missing or mutated genes of inherited genetic disorders, others seek to deliver new genes to cancer cells in order to destroy tumors.
Currently, immune responses to viral gene therapies pose a challenge to successful treatment. However, responses to viral vectors at immune privileged sites such as the eye may be reduced compared to other sites of the body.
Viral immunotherapy
Unlike traditional vaccines, in which attenuated or killed virus/bacteria is used to generate an immune response, viral immunotherapy uses genetically engineered viruses to present a specific antigen to the immune system. That antigen could be from any species of virus/bacteria or even human disease antigens, for example cancer antigens.Vaccines are another method of virotherapy that use attenuated or inactivated viruses to develop immunity to disease. An attenuated virus is a weakened virus that incites a natural immune response in the host that is often undetectable. The host also develops potentially life-long immunity due to the attenuated virus's similarity to the actual virus. Inactivated viruses are killed viruses that present a form of the antigen to the host. However, long-term immune response is limited.
There are two general approaches to develop these viruses using applied evolutionary techniques: Jennerian and Pastorian. The Jennerian method involves selecting similar viruses
from non-human organisms to protect against a human virus while Pastorian methods use serial passage. This Pastorian method is very similar to directive evolution of oncolytic viruses. Selected viruses that target humans are passed through multiple non-human organisms for multiple generations. Over time the viruses adapt to the foreign environments of their new hosts. These now maladapted viruses have minimal capacity for harming humans and are used as attenuated viruses for clinical use. An important consideration is to not reduce the replicative ability of the virus beyond the point where the immune system response will be compromised. A secondary immune response would therefore be insufficient to provide protection against the live virus should it be reintroduced to the host.
Specific projects and products
Oncolytic viruses
is a virotherapy drug that was approved by the State Agency of Medicines of the Republic of Latvia in 2004. It is wild type ECHO-7, a member of echovirus family. The potential use of echovirus as an oncolytic virus to treat cancer was discovered by Latvian scientist Aina Muceniece in the 1960s and 1970s. The data used to register the drug in Latvia is not sufficient to obtain approval to use it in the US, Europe, or Japan. As of 2017 there was no good evidence that RIGVIR is an effective cancer treatment. On March 19, 2019, the manufacturer of ECHO-7, SIA LATIMA, announced the drug's removal from sale in Latvia, quoting financial and strategic reasons and insufficient profitability. However, several days later an investigative TV show revealed that State Agency of Medicines had run laboratory tests on the vials, and found that the amount of ECHO-7 virus is of a much smaller amount than claimed by the manufacturer. According to agency's lab director, "It's like buying what you think is lemon juice, but finding that what you have is lemon-flavored water". In March 2019, the distribution of ECHO-7 in Latvia has been stopped.Viral gene therapy
Currently, there are many viral gene therapy products in clinical trial phases. Listed below are the products that are approved for marketing in the US and/or European Union.- In 2012 the European Commission approved Glybera, an AAV vector-based gene therapy product for the treatment of lipoprotein lipase deficiency in adults. It was the first gene therapy approved in the EU. The drug never received FDA approval in the US, and was discontinued by its manufacturer uniQure in 2017 due to profitability concerns. it is no longer authorized for use in the EU.
- In 2017, the FDA approved Spark Therapeutics' Luxturna, an AAV vector-based gene therapy product for the treatment of RPE65 mutation-associated retinal dystrophy in adults. Luxturna is the first gene therapy approved in the US for the treatment of a monogenetic disorder. It has been authorized for use in the EU since 2018.
- In 2019, the FDA approved Zolgensma, an AAV vector-based gene therapy product for the treatment of spinal muscular atrophy in children under the age of two. As of August 2019, it is the world's most expensive treatment, at a cost of over two million USD. Novartis is still seeking marketing approval for the drug in the EU as of 2019.
Protozoal virotherapy