Water model
In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid water, and aqueous solutions with explicit solvent. The models are determined from quantum mechanics, molecular mechanics, experimental results, and these combinations. To imitate a specific nature of molecules, many types of models have been developed. In general, these can be classified by the following three points; the number of interaction points called site, whether the model is rigid or flexible, whether the model includes polarization effects.
An alternative to the explicit water models is to use an implicit solvation model, also termed a continuum model, an example of which would be the COSMO solvation model or the polarizable continuum model or a hybrid solvation model.
Simple water models
The rigid models are considered the simplest water models and rely on non-bonded interactions. In these models, bonding interactions are implicitly treated by holonomic constraints. The electrostatic interaction is modeled using Coulomb's law, and the dispersion and repulsion forces using the Lennard-Jones potential. The potential for models such as TIP3P and TIP4P is represented bywhere kC, the electrostatic constant, has a value of 332.1 Å·kcal/ in the units commonly used in molecular modeling; qi and qj are the partial charges relative to the charge of the electron; rij is the distance between two atoms or charged sites; and A and B are the Lennard-Jones parameters. The charged sites may be on the atoms or on dummy sites. In most water models, the Lennard-Jones term applies only to the interaction between the oxygen atoms.
The figure below shows the general shape of the 3- to 6-site water models. The exact geometric parameters vary depending on the model.
2-site
A 2-site model of water based on the familiar three-site SPC model has been shown to predict the dielectric properties of water using site-renormalized molecular fluid theory.3-site
Three-site models have three interaction points corresponding to the three atoms of the water molecule. Each site has a point charge, and the site corresponding to the oxygen atom also has the Lennard-Jones parameters. Since 3-site models achieve a high computational efficiency, these are widely used for many applications of molecular dynamics simulations. Most of the models use a rigid geometry matching that of actual water molecules. An exception is the SPC model, which assumes an ideal tetrahedral shape instead of the observed angle of 104.5°.The table below lists the parameters for some 3-site models.
TIPS | SPC | TIP3P | SPC/E | |
r, Å | 0.9572 | 1.0 | 0.9572 | 1.0 |
HOH, deg | 104.52 | 109.47 | 104.52 | 109.47 |
A, 103 kcal Å12/mol | 580.0 | 629.4 | 582.0 | 629.4 |
B, kcal Å6/mol | 525.0 | 625.5 | 595.0 | 625.5 |
q | −0.80 | −0.82 | −0.834 | −0.8476 |
q | +0.40 | +0.41 | +0.417 | +0.4238 |
The SPC/E model adds an average polarization correction to the potential energy function:
where μ is the electric dipole moment of the effectively polarized water molecule, μ0 is the dipole moment of an isolated water molecule, and αi is an isotropic polarizability constant, with a value of. Since the charges in the model are constant, this correction just results in adding 1.25 kcal/mol to the total energy. The SPC/E model results in a better density and diffusion constant than the SPC model.
The TIP3P model implemented in the CHARMM force field is a slightly modified version of the original. The difference lies in the Lennard-Jones parameters: unlike TIP3P, the CHARMM version of the model places Lennard-Jones parameters on the hydrogen atoms too, in addition to the one on oxygen. The charges are not modified. Three-site model has better performance in calculating specific heats.
Flexible SPC water model
The flexible simple point-charge water model is a re-parametrization of the three-site SPC water model. The SPC model is rigid, whilst the flexible SPC model is flexible. In the model of Toukan and Rahman, the O–H stretching is made anharmonic, and thus the dynamical behavior is well described. This is one of the most accurate three-center water models without taking into account the polarization. In molecular dynamics simulations it gives the correct density and dielectric permittivity of water.Flexible SPC is implemented in the programs MDynaMix and Abalone.
Other models
- Ferguson
- CVFF
- MG
- KKY potential.
- BLXL.
4-site
The TIP4P model, first published in 1983, is widely implemented in computational chemistry software packages and often used for the simulation of biomolecular systems. There have been subsequent reparameterizations of the TIP4P model for specific uses: the TIP4P-Ew model, for use with Ewald summation methods; the TIP4P/Ice, for simulation of solid water ice; and TIP4P/2005, a general parameterization for simulating the entire phase diagram of condensed water.
Most of four-site water models use OH distance and HOH angle matching that of the free water molecule. An exception is OPC model, on which no geometry constraints are imposed other than the fundamental C2v molecular symmetry of the water molecule. Instead, the point charges and their positions are optimized to best describe the electrostatics of the water molecule. OPC reproduces a comprehensive set of bulk properties more accurately than commonly used rigid n-site water models. OPC model is implemented in AMBER force field.
BF | TIPS2 | TIP4P | TIP4P-Ew | TIP4P/Ice | TIP4P/2005 | OPC | TIP4P-D | |
r, Å | 0.96 | 0.9572 | 0.9572 | 0.9572 | 0.9572 | 0.9572 | 0.8724 | 0.9572 |
HOH, deg | 105.7 | 104.52 | 104.52 | 104.52 | 104.52 | 104.52 | 103.6 | 104.52 |
r, Å | 0.15 | 0.15 | 0.15 | 0.125 | 0.1577 | 0.1546 | 0.1594 | 0.1546 |
A, 103 kcal Å12/mol | 560.4 | 695.0 | 600.0 | 656.1 | 857.9 | 731.3 | 865.1 | 904.7 |
B, kcal Å6/mol | 837.0 | 600.0 | 610.0 | 653.5 | 850.5 | 736.0 | 858.1 | 900.0 |
q | −0.98 | −1.07 | −1.04 | −1.04844 | −1.1794 | −1.1128 | −1.3582 | −1.16 |
q | +0.49 | +0.535 | +0.52 | +0.52422 | +0.5897 | +0.5564 | +0.6791 | +0.58 |
Others:
- q-TIP4P/F
5-site
BNS | ST2 | TIP5P | TIP5P-E | |
r, Å | 1.0 | 1.0 | 0.9572 | 0.9572 |
HOH, deg | 109.47 | 109.47 | 104.52 | 104.52 |
r, Å | 1.0 | 0.8 | 0.70 | 0.70 |
LOL, deg | 109.47 | 109.47 | 109.47 | 109.47 |
A, 103 kcal Å12/mol | 77.4 | 238.7 | 544.5 | 554.3 |
B, kcal Å6/mol | 153.8 | 268.9 | 590.3 | 628.2 |
q | −0.19562 | −0.2357 | −0.241 | −0.241 |
q | +0.19562 | +0.2357 | +0.241 | +0.241 |
RL, Å | 2.0379 | 2.0160 | - | - |
RU, Å | 3.1877 | 3.1287 | - | - |
Note, however, that the BNS and ST2 models do not use Coulomb's law directly for the electrostatic terms, but a modified version that is scaled down at short distances by multiplying it by the switching function S:
Thus, the RL and RU parameters only apply to BNS and ST2.
6-site
Originally designed to study water/ice systems, a 6-site model that combines all the sites of the 4- and 5-site models was developed by Nada and van der Eerden. Since it had a very high melting temperature when employed under periodic electrostatic conditions, a modified version was published later optimized by using the Ewald method for estimating the Coulomb interaction.Other
- The effect of explicit solute model on solute behavior in biomolecular simulations has been also extensively studied. It was shown that explicit water models affected the specific solvation and dynamics of unfolded peptides, while the conformational behavior and flexibility of folded peptides remained intact.
- MB model. A more abstract model resembling the Mercedes-Benz logo that reproduces some features of water in two-dimensional systems. It is not used as such for simulations of "real" systems, but it is useful for qualitative studies and for educational purposes.
- Coarse-grained models. One- and two-site models of water have also been developed. In coarse-grain models, each site can represent several water molecules.
- Many-body models. Water models built using training-set configurations solved quantum mechanically, which then use machine learning protocols to extract potential-energy surfaces. These potential-energy surfaces are fed into MD simulations for an unprecedented degree of accuracy in computing physical properties of condensed phase systems.
Computational cost
When using rigid water models in molecular dynamics, there is an additional cost associated with keeping the structure constrained, using constraint algorithms.