Weber modular function
In mathematics, the Weber modular functions are a family of three modular functions f, f1, and f2, studied by Heinrich Martin Weber.Definition
Let where τ is an element of the upper half-plane.
where is the Dedekind eta function. Note the descriptions as quotients immediately imply
The transformation τ → –1/τ fixes f and exchanges f1 and f2. So the 3-dimensional complex vector space with basis f, f1 and f2 is acted on by the group SL2.Let the argument of the Jacobi theta function be the nome. Then,
Using the well-known identity,
thus,The three roots of the cubic equation,
where j is the j-function are given by. Also, since,
then,