To create the Wigner effect, neutrons that collide with the atoms in a crystal structure must have enoughenergy to displace them from the lattice. This amount is approximately 25 eV. A neutron's energy can vary widely, but it is not uncommon to have energies up to and exceeding 10 MeV in the centre of a nuclear reactor. A neutron with a significant amount of energy will create a displacement cascade in a matrix via elastic collisions. For example, a 1 MeV neutron striking graphite will create 900 displacements; not all displacements will create defects, because some of the struck atoms will find and fill the vacancies that were either small pre-existing voids or vacancies newly formed by the other struck atoms. The atoms that do not find a vacancy come to rest in non-ideal locations; that is, not along the symmetrical lines of the lattice. These atoms are referred to as interstitial atoms, or simply interstitials. An interstitial atom and its associated vacancy are known as a Frenkel defect. Because these atoms are not in the ideal location, they have an energy associated with them, much as a ball at the top of a hill has gravitational potential energy. This energy is referred to as Wigner energy. When a large number of interstitials have accumulated, they pose a risk of releasing all of their energy suddenly, creating a rapid, very great increase in temperature. Sudden, unplanned increases in temperature can present a large risk for certain types of nuclear reactors with low operating temperatures; one such was the indirect cause of the Windscale fire. Accumulation of energy in irradiated graphite has been recorded as high as 2.7 kJ/g, but is typically much lower than this. Despite some reports, Wigner energy buildup had nothing to do with the cause of the Chernobyl disaster: this reactor, like all contemporary power reactors, operated at a high enough temperature to allow the displaced graphite structure to realign itself before any potential energy could be stored. Wigner energy may have played some part following the prompt critical neutron spike, when the accident entered the graphite fire phase of events.
Dissipation of Wigner energy
A buildup of Wigner energy can be relieved by heating the material. This process is known as annealing. In graphite this occurs at 250 °C.
Intimate Frenkel pairs
In 2003, it was postulated that Wigner energy can be stored by the formation of metastable defect structures in graphite. Notably, the large energy release observed at 200–250 °C has been described in terms of a metastable interstitial-vacancy pair. The interstitial atom becomes trapped on the lip of the vacancy, and there is a barrier for it to recombine to give perfect graphite.