Yield10 Bioscience is a company developing new technologies to achieve improvements in crop yield to enhance global food security.
History
Founded in 1992 with the help of a licensing agreement with Massachusetts Institute of Technology, Metabolix, Inc. is a bioscience company with headquarters in Cambridge, Massachusetts. Metabolix provides sustainable solutions to the plastic, chemical and energy industries. Oliver Peoples, Ph.D., and Anthony Sinskey, Ph.D., co-founded Metabolix after work at the that identified the elementary methods and means for engineering polyhydroxyalkanoates production in plants and bacteria, thus making them biodegradable. In early 2017, Metabolix became Yield10 Bioscience, its crop research program.
Current work
Yield10 Bioscience is developing and commercializing metabolic engineering technologies capable using predictive models to facilitate gene discovery, ultimately enhancing photosynthesis to improve seed and crop yield in a number of commercial row crops. Yield10’s technology aspires to and has shown the potential for making major crops much more productive.
Prior awards
Metabolix has been recognized for its research, development and product innovations through a series of prestigious awards and grants including: the "Presidential Green Chemistry Challenge Award", the "New Technologies in Renewable Materials and Processes Award", the "Technology Pioneer Award", and the Museum of Science Boston's "Invented Here!" award.
Products
Crop technologies
The centerpiece of the Metabolix's plant technology is polyhydroxybutyrate, the simplest member of the broad polyhydroxyalkanoate family of biopolymers. They have worked with switchgrass, camelina, sugarcane, as well as tobacco. In 2009, Metabolix completed a field trial producing PHA in a tobacco crop. In 2012, Metabolix secured an ARPA-E grant to improve productivity of biofuel production in plants, specifically camelina. In 2011, Metabolix was awarded a $6.0 million grant to produce PHB in switchgrass and to develop methods to thermally convert the PHB-containing switchgrass to crotonic acid and a higher density residual biomass fraction for production of biofuel. In 2017, Yield10 participated in a Department of Energy program to help boost Camelina oilseed.
Platforms
C3
C3 is the most common form of photosynthesis, existing in most crops suitable for human consumption, including wheat, canola, soybean and rice. In 2019 Yield10 announced results from its 2018 field test, demonstrating that its C3003 gene trait showed an 11% increase in seed yield among canola crops, when compared to control plants. Similarly, C3003 met its objectives for soybean yield, and showed an increase in Camelina.
C4
C4 photosynthesis plants, like corn and sugar cane, possess a more complex system of metabolic pathways. In 2018, Yield reported promising results for its C3004 gene trait in Camelina lines, following growth chamber studies.
CRISPR
Yield10 has also commenced development of CRISPR-enabled technology to impact crop yield. The company received a nonregulated status letter from the USDA-APHIS Biotechnology Regulatory Services acknowledging that its camelina line has had a gene disrupted using CRISPR/Cas9 gene editing technology, resulting in the desired phenotype. The use of CRISPR technology for this purpose could make a significant impact on the future of global food security.
PHA-based Biomaterials
In 2019, Yield10 filed a U.S. Patent application for new technology enabling low-cost production of PHA-based biomaterials, knowing for their use in water treatment to remove nitrogen and phosphates, to maintain the viability and vigor of Camelina seed.
Partnerships
In 2018, Yield10 was granted a non-exclusive research license to CRISPR-Cas9 gene editing technology by DowDuPont’s agricultural business, Corteva Agriscience, and the non-profit Broad Institute of MIT and Harvard. The Company also has established a partnership with University of Missouri, exercising an option with the University to obtain exclusive worldwide licenses to advanced technologies for oilseed crops. The relationship expanded in 2019 to include a new gene target. In 2018, Yield10 was granted a non-exclusive research license to Forage Genetics International, LLC, a subsidiary of Land O’Lakes, Inc., to conduct research with the novel traits within its forage sorghum development program as a strategy to improve biomass yields. Yield10 has also forged respective partnerships and research agreements with Bayer/Monsanto, Michigan State University, University of Massachusetts, and the National Research Council of Canada.