7400-series integrated circuits
The 7400 series of integrated circuits were one of the most popular logic families of transistor–transistor logic logic chips. In 1964, Texas Instruments introduced the first members of their ceramic semiconductor package series, the SN5400s. A low-cost plastic package SN7400 series was introduced in 1966 which quickly gained over 50% of the logic chip market, and eventually becoming de facto standardized electronic components. Over the decades, many generations of pin-compatible descendant families evolved to include support for low power CMOS technology, lower supply voltages, and surface mount packages.
Overview
The 7400 series contains hundreds of devices that provide everything from basic logic gates, flip-flops, and counters, to special purpose bus transceivers and arithmetic logic units. Specific functions are described in a list of 7400 series integrated circuits. Some TTL logic parts were made with an extended military-specification temperature range. These parts are prefixed with 54 instead of 74 in the part number. A short-lived 64 prefix on Texas Instruments parts indicated an industrial temperature range; this prefix had been dropped from the TI literature by 1973. Since the 1970s, new product families have been released to replace the original 7400 series. More recent TTL logic families were manufactured using CMOS or BiCMOS technology rather than TTL.Today, surface-mounted CMOS versions of the 7400 series are used in various applications in electronics and for glue logic in computers and industrial electronics. The original through-hole devices in dual in-line packages were the mainstay of the industry for many decades. They are useful for rapid breadboard-prototyping and for education and remain available from most manufacturers. The fastest types and very low voltage versions are typically surface-mount only, however.
The first part number in the series, the 7400, is a 14-pin IC containing four two-input NAND gates. Each gate uses two input pins and one output pin, with the remaining two pins being power and ground. This part was made in various through-hole and surface-mount packages, including flat pack and plastic/ceramic dual in-line. Additional characters in a part number identify the package and other variations.
Unlike the older resistor-transistor logic integrated circuits, bipolar TTL gates were unsuitable to be used as analog devices, providing low gain, poor stability, and low input impedance. Special-purpose TTL devices were used to provide interface functions such as Schmitt triggers or monostable multivibrator timing circuits. Inverting gates could be cascaded as a ring oscillator, useful for purposes where high stability was not required.
History
Although the 7400 series was the first de facto industry standard TTL logic family, there were earlier TTL logic families such as:- Sylvania Universal High-level Logic in 1963
- Motorola MC4000 MTTL
- National Semiconductor DM8000
- Fairchild 9300 series
- Signetics 8200 and 8T00
The 5400 and 7400 series were used in many popular minicomputers in the 1970s and early 1980s. Some models of the DEC PDP-series 'minis' used the 74181 ALU as the main computing element in the CPU. Other examples were the Data General Nova series and Hewlett-Packard 21MX, 1000, and 3000 series.
In 1965, typical quantity-one pricing for the SN5400 was around 22 USD.
As of 2007, individual commercial-grade chips in molded epoxy packages can be purchased for approximately US$0.25 each, depending on the particular chip.
Families
7400 series parts were constructed using bipolar transistors, forming what is referred to as transistor–transistor logic or TTL. Newer series, more or less compatible in function and logic level with the original parts, use CMOS technology or a combination of the two. Originally the bipolar circuits provided higher speed but consumed more power than the competing 4000 series of CMOS devices. Bipolar devices are also limited to a fixed power supply voltage, typically 5 V, while CMOS parts often support a range of supply voltages.Milspec-rated devices for use in extended temperature conditions are available as the 5400 series. Texas Instruments also manufactured radiation-hardened devices with the prefix RSN, and the company offered beam-lead bare dies for integration into hybrid circuits with a BL prefix designation.
Regular-speed TTL parts were also available for a time in the 6400 series – these had an extended industrial temperature range of −40 °C to +85 °C. While companies such as Mullard listed 6400-series compatible parts in 1970 data sheets, by 1973 there was no mention of the 6400 family in the Texas Instruments TTL Data Book. Some companies have also offered industrial extended temperature range variants using the regular 7400-series part numbers with a prefix or suffix to indicate the temperature grade.
As integrated circuits in the 7400 series were made in different technologies, usually compatibility was retained with the original TTL logic levels and power supply voltages. An integrated circuit made in CMOS is not a TTL chip, since it uses field-effect transistors and not bipolar junction transistors, but similar part numbers are retained to identify similar logic functions and electrical compatibility in the different subfamilies.
Over 40 different logic subfamilies use this standardized part number scheme.
Bipolar
- 74 – Standard TTL. The original logic family had no letters between the "74" and the part number. 10 ns gate delay, 10 mW dissipation, 4.75–5.25 V, released in 1966.
- 74L – Low-power. Larger resistors allowed 1 mW dissipation at the cost of a very slow 33 ns gate delay. Obsolete, replaced by 74LS or CMOS technology. Introduced 1971.
- 74H – High-speed. 6 ns gate delay but 22 mW power dissipation. Used in 1970s era supercomputers. Still produced but generally superseded by the 74S series. Introduced in 1971.
- 74S – Schottky. Implemented with Schottky diode clamps at the inputs to prevent charge storage, this provides faster operation than the 74 and 74H series, traded off for greater power consumption than the original 74 family and higher cost. 3 ns gate delay, 20 mW dissipation, released in 1971.
- 74LS – Low-power Schottky. Implemented using the same technology as 74S but with reduced power consumption and switching speed, due to larger resistors. Typical 10 ns gate delay, remarkable 2 mW dissipation, 4.75–5.25 V.
- 74AS – Advanced Schottky, the next iteration of the 74S series with greater speed and fan-out despite lower power consumption. Implemented using 74S technology with the addition of "miller killer" circuitry to speed up low-to-high transitions. 1.7 ns gate delay, 8 mW, 4.5–5.5 V.
- 74ALS – Advanced low-power Schottky. Same technology as 74AS but with the speed/power tradeoff of 74LS. 4 ns, 1.2 mW, 4.5–5.5 V.
- 74F – Fast. Fairchild's version of TI's 74AS. 3.4 ns, 6 mW, 4.5–5.5 V. Introduced in 1978.
CMOS
- 74C – CMOS 4–15 V operation similar to buffered 4000 series. Input and output levels not compatible with TTL families: generally very close to 0 V and Vcc.
- 74HC – High-speed CMOS, similar performance to 74LS, input/output levels not compatible with TTL, 12 ns. 2.0–6.0 V.
- 74HCT – High speed CMOS TTL-compatible, 74HC technology with compatible logic levels to bipolar TTL parts.
- 74AC – Advanced CMOS, performance generally between 74S and 74F.
- 74ACT – Advanced CMOS TTL-compatible, performance generally between 74S and 74F. Compatible logic levels to bipolar TTL parts.
- 74ACQ – Advanced CMOS with Quiet outputs.
- 74AHC – Advanced High-speed CMOS, three times as fast as 74HC, tolerant of 5.5 V on input.
- 74ALVC – Low-voltage CMOS – 1.8–3.3 V, < 3 ns at 3.3 V.
- 74ALVT – Low-voltage TTL-compatible – 2.5–3.3 V, 5 V tolerant inputs, high current ≤ 64 mA, < 3 ns at 2.5 V.
- 74AUC – Low-voltage – 0.8–2.5 V, < 2.5 ns at 1.8 V.
- 74AUP – Low-voltage – 0.8–3.6 V, 15.6/8.2/4.3 ns at 1.2/1.8/3.3 V, partial power-down specified, inputs protected.
- 74AVC – Low-voltage – 1.2–3.3 V, < 3.2 ns at 1.8 V, bus hold, IOFF.
- 74AXC – Low-voltage – 0.65–3.6 V, < 3.2 ns at 1.8 V, bus hold, IOFF.
- 74FC – Fast CMOS, performance similar to 74F.
- 74FCT – Fast CMOS TTL-compatible, 74FC technology with TTL-compatible logic levels.
- 74LCX – CMOS with 3 V supply and 5 V tolerant inputs.
- 74LV – Low-voltage CMOS – 2.0–5.5 V supply and 5 V tolerant inputs.
- 74LVC – Low voltage – 1.65–3.3 V and 5 V tolerant inputs, < 5.5 ns at 3.3 V, < 9 ns at 2.5 V.
- 74LV-A – 2.5–5 V, 5 V tolerant inputs, < 10 ns at 3.3 V, bus hold, IOFF, low noise.
- 74LVT – Low-voltage – 3.3 V supply, 5 V tolerant inputs, high output current < 64 mA, < 3.5 ns at 3.3 V, IOFF, low noise.
- 74LVQ – Low-voltage – 3.3 V.
- 74LVX – Low-voltage – 3.3 V with 5 V tolerant inputs.
- 74VHC – Very-high-speed CMOS – 74S performance in CMOS technology and power.
- 74VHC – Very high-speed CMOS TTL-compatible, over-voltage tolerant inputs.
BiCMOS
- 74BCT – BiCMOS, TTL-compatible input thresholds, used for buffers.
- 74ABT – Advanced BiCMOS, TTL-compatible input thresholds, faster than 74ACT and 74BCT.
The 74H family is the same basic design as the 7400 family with resistor values reduced. This reduced the typical propagation delay from 9 ns to 6 ns but increased the power consumption. The 74H family provided a number of unique devices for CPU designs in the 1970s. Many designers of military and aerospace equipment used this family over a long period and as they need exact replacements, this family is still produced by Lansdale Semiconductor.
The 74S family, using Schottky circuitry, uses more power than the 74, but is faster. The 74LS family of ICs is a lower-power version of the 74S family, with slightly higher speed but lower power dissipation than the original 74 family; it became the most popular variant once it was widely available. Many 74LS ICs can be found in microcomputers and digital consumer electronics manufactured in the 1980s and early 1990s.
The 74F family was introduced by Fairchild Semiconductor and adopted by other manufacturers; it is faster than the 74, 74LS and 74S families.
Through the late 1980s and 1990s newer versions of this family were introduced to support the lower operating voltages used in newer CPU devices.
Part numbering
Part number schemes varied by manufacturer. The part numbers for 7400-series logic devices often use the following designators:- Often first, a two or three letter prefix, denoting the manufacturer and flow class of the device. These codes are no longer closely associated with a single manufacturer, for example, Fairchild Semiconductor manufactures parts with MM and DM prefixes, and no prefixes.
- Two digits, where "74" denotes a commercial temperature range device and "54" denotes a military temperature range. Historically, "64" denoted a short-lived series with an intermediate "industrial" temperature range.
- No, or up to four letters denoting the logic subfamily.
- Two or more arbitrarily assigned digits that identify the function of the device. There are hundreds of different devices in each family.
- Additional suffix letters and numbers may be appended to denote the package type, quality grade, or other information, but this varies widely by manufacturer.
Many logic families maintain a consistent use of the device numbers as an aid to designers. Often a part from a different 74x00 subfamily could be substituted in a circuit, with the same function and pin-out yet more appropriate characteristics for an application, which was a large part of the appeal of the 74C00 series over the competing CD4000B series, for example. But there are a few exceptions where incompatibilities across the subfamilies occurred, such as:
- some flat-pack devices and surface-mount devices,
- some of the faster CMOS series,
- a few low-power TTL devices have a different pin-out than the regular series part.
- five versions of the 74x54, namely 7454, 7454W, 74H54, 74L54W and 74L54N/74LS54, are different from each other in pin-out and/or function,
Second sources from Europe and Eastern Bloc
At the time the 7400 series was being made, some European manufacturers, such as Philips/Mullard, produced a series of TTL integrated circuits with part names beginning FJ. Some examples of FJ series are:
- FJH101 single 8-input NAND gate,
- FJH131 quadruple 2-input NAND gate,
- FJH181 2+2+2+2 input AND-OR-NOT gate.
Another peculiarity of the Soviet-made 7400 series was the packaging material used in the 1970s–1980s. Instead of the ubiquitous black resin, they had a brownish-green body colour with subtle swirl marks created during the moulding process. It was jokingly referred to in the Eastern Bloc electronics industry as the "elephant-dung packaging", due to its appearance.
The Soviet integrated circuit designation is different from the Western series:
- the technology modifications were considered different series and were identified by different numbered prefixes – К155 series is equivalent to plain 74, К555 series is 74LS, etc.;
- the function of the unit is described with a two-letter code followed by a number:
- * the first letter represents the functional group – logical, triggers, counters, multiplexers, etc.;
- * the second letter shows the functional subgroup, making the distinction between logical NAND and NOR, D- and JK-triggers, decimal and binary counters, etc.;
- * the number distinguishes variants with different number of inputs or different number of elements within a die – ЛА1/ЛА2/ЛА3 are 2 four-input / 1 eight-input / 4 two-input NAND elements respectively.
Clones of the 7400 series were also made in other Eastern Bloc countries:
- Bulgaria used a designation somewhat similar to that of the Soviet Union, e.g. 1ЛБ00ШМ for a 74LS00. Some of the two-letter functional groups were borrowed from the Soviet designation, while others differed. Unlike the Soviet scheme, the two or three digit number after the functional group matched the western counterpart. The series followed at the end. Only the LS series is known to have been manufactured in Bulgaria.
- Czechoslovakia used the 7400 numbering scheme with manufacturer prefix MH. Example: MH7400. Tesla also produced industrial grade and military grade ones.
- Poland used the 7400 numbering scheme with manufacturer prefixes UCA for the 5400 and 6400 series, as well as UCY for the 7400 series. Examples: UCA6400, UCY7400. Note that ICs with the prefix MCY74 correspond to the 4000 series.
- Hungary also used the 7400 numbering scheme, but with manufacturer suffix – 7400 is marked as 7400APC.
- Romania used a trimmed 7400 numbering with the manufacturer prefix CDB for the 74 and 74H series, where the suffix H indicated the 74H series. For the later 74LS series, the standard numbering was used.
- East Germany also used trimmed 7400 numbering without manufacturer prefix or suffix. The prefix D designates digital IC, and not the manufacturer. Example: D174 is 7474. 74LS clones were designated by the prefix DL; e.g. DL000 = 74LS00. In later years East German made clones were also available with standard 74* numbers, usually for export.
Czechoslovakia,
Poland, and East Germany. The 8400 series in the table below indicates an industrial temperature range from −25 °C to +85 °C.
Around 1990 the production of standard logic ceased in all Eastern European countries except the Soviet Union and later Russia and Belarus. As of 2016, the series 133, К155, 1533, КР1533, 1554, 1594, and 5584 were in production at "Integral" in Belarus,
as well as the series 130 and 530 at "NZPP-KBR",
134 and 5574 at "VZPP",
533 at "Svetlana",
1564, К1564, КР1564 at "NZPP",
1564, К1564 at "Voshod",
and 1564 at "Exiton" in Russia.
The Russian company Angstrem manufactures 54HC circuits as the 5514БЦ1 series, 54AC as the 5514БЦ2 series, and 54LVC as the 5524БЦ2 series.