Atmospheric river


An atmospheric river is a narrow corridor or filament of concentrated moisture in the atmosphere. Other names for this phenomenon are tropical plume, tropical connection, moisture plume, and water vapor surge.
Atmospheric rivers consist of narrow bands of enhanced water vapor transport, typically along the boundaries between large areas of divergent surface air flow, including some frontal zones in association with extratropical cyclones that form over the oceans. Pineapple Express storms are the most commonly represented and recognized type of atmospheric rivers; they are given the name due to the warm water vapor plumes originating over the Hawaiian tropics that follow various paths towards western North America, arriving at latitudes from California and the Pacific Northwest to British Columbia and even southeast Alaska.

Description

The term was originally coined by researchers Reginald Newell and Yong Zhu of the Massachusetts Institute of Technology in the early 1990s, to reflect the narrowness of the moisture plumes involved. Atmospheric rivers are typically several thousand kilometers long and only a few hundred kilometers wide, and a single one can carry a greater flux of water than the Earth's largest river, the Amazon River. There are typically 3–5 of these narrow plumes present within a hemisphere at any given time.
In the current research field of atmospheric rivers the length and width factors described above in conjunction with an integrated water vapor depth greater than 2.0 cm are used as standards to categorize atmospheric river events.
A January 2019 article in Geophysical Research Letters described them as "long, meandering plumes of water vapor often originating over the tropical oceans that bring sustained, heavy precipitation to the west coasts of North America and northern Europe" that cause rainfall throughout the winter months."
As data modeling techniques progress, integrated water vapor transport is becoming a more common data type used to interpret atmospheric rivers. Its strength lies in its ability to show the transportation of water vapor over multiple time steps instead of a stagnant measurement of water vapor depth in a specific air column. In addition IVT is more directly attributed to orographic precipitation, a key factor in the production of intense rainfall and subsequent flooding. For instance the water vapor image to the left shows two rivers on 5 December 2015: the first, stretching from the Caribbean to the United Kingdom, caused by Storm Desmond, and the second originating from the Philippines is crossing the Pacific Ocean to the west coast of North America.

Scale

The Center for Western Weather and Water Extremes at the Scripps Institution of Oceanography released a five-level scale in February 2019 to categorize atmospheric rivers, ranging from "weak" to "exceptional" in strength, or "beneficial" to "hazardous" in impact. The scale was developed by F. Martin Ralph, director of CW3E, who collaborated with Jonathan Rutz from the National Weather Service and other experts. The scale considers both the amount of water vapor transported and the duration of the event. Atmospheric rivers receive a preliminary rank according to the 3-hour average maximum vertically integrated water vapor transport. Those lasting less than 24 hours are demoted by one rank, while those lasting longer than 48 hours are increased by one rank.
Examples of different atmospheric river categories include the following historical storms:
  1. February 2, 2017; lasted 24 hours
  2. November 19–20, 2016; lasted 42 hours
  3. October 14–15, 2016; lasted 36 hours and produced 5–10 inches of rainfall
  4. January 8–9, 2017; lasted 36 hours and produced 14 inches of rainfall
  5. December 29, 1996 – January 2, 1997; lasted 100 hours and caused >$1 billion in damage
Typically, the Oregon coast averages one Cat 4 atmospheric river each year; Washington state averages one Cat 4 AR every two years; the Bay Area averages one Cat 4 AR every three years; and southern California, which typically experiences one Cat 2 or Cat 3 AR each year, averages one Cat 4 AR every ten years.

Impacts

Atmospheric rivers have a central role in the global water cycle. On any given day, atmospheric rivers account for over 90% of the global meridional water vapor transport, yet they cover less than 10% of the Earth's circumference. Atmospheric rivers are also known to contribute to about 22% of total global runoff.
They also are the major cause of extreme precipitation events that cause severe flooding in many mid-latitude, westerly coastal regions of the world, including the West Coast of North America, Western Europe, the west coast of North Africa, the Iberian Peninsula, Iran and New Zealand. Equally, the absence of atmospheric rivers has been linked with the occurrence of droughts in several parts of the world including South Africa, Spain and Portugal.

United States

The inconsistency of California's rainfall is due to the variability in strength and quantity of these storms, which can produce strenuous effects on California's water budget. The factors described above make California a perfect case study to show the importance of proper water management and prediction of these storms. The significance atmospheric rivers have for the control of coastal water budgets juxtaposed against their creation of detrimental floods can be constructed and studied by looking at California and the surrounding coastal region of the western United States. In this region atmospheric rivers have contributed 30–50% of total annual rainfall according to a 2013 study. The Fourth National Climate Assessment report, released by the U.S. Global Change Research Program on November 23, 2018 confirmed that along the U.S. western coast, landfalling atmospheric rivers "account for 30%–40% of precipitation and snowpack. These landfalling atmospheric rivers "are associated with severe flooding events in California and other western states."
The USGCRP team of thirteen federal agencies—the DOA, DOC, DOD, DOE, HHS, DOI, DOS, DOT, EPA, NASA, NSF, Smithsonian Institution, and the USAID—with the assistance of "1,000 people, including 300 leading scientists, roughly half from outside the government" reported that, "As the world warms, the "landfalling atmospheric rivers on the West Coast are likely to increase" in "frequency and severity" because of "increasing evaporation and higher atmospheric water vapor levels in the atmosphere."
Based on the North American Regional Reanalysis analyses, a team led by National Oceanic and Atmospheric Administration's Paul J. Neiman, concluded in 2011 that landfalling ARs were "responsible for nearly all the annual peak daily flow s in western Washington" from 1998 through 2009.
The front cover of the NCA4 report features a natural-color NASA image of conditions over the northeastern Pacific on February 20, 2017. The report said that this AR brought a "stunning" end to the American West's 5-year drought with "some parts of California received nearly twice as much rain in a single deluge as normally falls in the preceding 5 months ". NASA Earth Observatory's Jesse Allen created the front cover visualization with the Visible Infrared Imaging Radiometer Suite data on the Suomi National Polar-orbiting Partnership satellite.
According to a May 14, 2019 article in San Jose, California's The Mercury News, atmospheric rivers, "giant conveyor belts of water in the sky", cause the moisture-rich "Pineapple express" storm systems that come from the Pacific Ocean several times annually and account for about 50 percent of California's annual precipitation. University of California at San Diego's Center for Western Weather and Water Extremes's director Marty Ralph, who is one of the United States' experts on atmospheric river storms and has been active in AR research for many years, said that, atmospheric rivers are more common in winter. For example, from October 2018 to spring 2019, there were 47 atmospheric river, 12 of which were rated strong or extreme, in Washington, Oregon and California. The rare May 2019 atmospheric rivers, classified as Category 1 and Category 2, are beneficial in terms of preventing seasonal wildfires but the "swings between heavy rain and raging wildfires" are raising questions about moving from "understanding that the climate is changing to understanding what to do about it."
Atmospheric rivers have caused an average of $1.1 billion annually, much of it occurring in Sonoma County, California, according to a December 2019 study by the Scripps Institution on Oceanography at UC San Diego and the US Army Corps of Engineers, which analyzed data from the National Flood Insurance Program and the National Weather Service. Just twenty counties suffered almost 70% of the damage, the study found, and that one of the main factors in the scale of damage appeared to be the number of properties located in a flood plain. These counties were:

Canada

According to a January 22, 2019 article in Geophysical Research Letters, the Fraser River Basin, a "snow-dominated watershed" in British Columbia, is exposed to landfalling ARs, originating over the tropical Pacific Ocean that bring "sustained, heavy precipitation" throughout the winter months. The authors predict that based on their modelling "extreme rainfall events resulting from atmospheric rivers may lead to peak annual floods of historic proportions, and of unprecedented frequency, by the late 21st century in the Fraser River Basin."

Iran

While a large body of research has shown the impacts of the atmospheric rivers on weather-related natural disasters over the western U.S. and Europe, little is known about their mechanisms and contribution to flooding in the Middle East. However, a rare atmospheric river was found responsible for the record floods of March 2019 in Iran that damaged one-third of the country’s infrastructures and killed 76 people. This AR was named Dena, after the peak of the Zagros Mountains, which played a crucial role in precipitation formation. AR Dena started its long, 9000 km journey from the Atlantic Ocean and travelled across North Africa before its final landfall over the Zagros Mountains. Specific synoptic weather conditions, including tropical-extratropical interactions of the atmospheric jets, and anomalously warm sea-surface temperatures in all surrounding basins provided the necessary ingredients for formation of this AR. Water transport by AR Dena was equivalent to more than 150 times the aggregated flow of the four major rivers in the region. The intense rains made the 2018-2019 rainy season the wettest in the past half century, a sharp contrast with the prior year, which was the driest over the same period. Thus, this event is a compelling example of rapid dry-to-wet transitions and intensification of extremes, potentially resulting from the climate change.

Satellites and sensors

According to a 2011 Eos magazine article by 1998, the spatiotemporal coverage of water vapor data over oceans had vastly improved through the use of "microwave remote sensing from polar-orbiting satellites", such as the special sensor microwave/imager. This led to greatly increased attention to the "prevalence and role" of atmospheric rivers ARs. Prior to the use of these satellites and sensors, scientists were mainly dependent on weather balloons and other related technologies that did not adequately cover oceans. SSM/I and similar technologies, provide "frequent global measurements of Integrated Water Vapor over the Earth’s oceans."