Bhāskara II


Bhāskara also known as Bhāskarācārya, and as Bhāskara II to avoid confusion with Bhāskara I, was an Indian mathematician and astronomer. He was born in Bijapur in Karnataka.
Bhāskara and his works represent a significant contribution to mathematical and astronomical knowledge in the 12th century. He has been called the greatest mathematician of medieval India. His main work Siddhānta-Śiromani, is divided into four parts called Līlāvatī, Bījagaṇita, Grahagaṇita and Golādhyāya, which are also sometimes considered four independent works. These four sections deal with arithmetic, algebra, mathematics of the planets, and spheres respectively. He also wrote another treatise named Karaṇā Kautūhala.
Bhāskara's work on calculus predates Newton and Leibniz by over half a millennium. He is particularly known in the discovery of the principles of differential calculus and its application to astronomical problems and computations. While Newton and Leibniz have been credited with differential and integral calculus, there is strong evidence to suggest that Bhāskara was a pioneer in some of the principles of differential calculus. He was perhaps the first to conceive the differential coefficient and differential calculus.
On 20 November 1981 the Indian Space Research Organisation launched the Bhaskara II satellite honouring the mathematician and astronomer.

Date, place and family

Bhāskara gives his date of birth, and date of composition of his major work, in a verse in the Āryā metre:
This reveals that he was born in 1036 of the Shaka era, and that he composed the Siddhānta-Śiromaṇī when he was 36 years old. He also wrote another work called the Karaṇa-kutūhala when he was 69. His works show the influence of Brahmagupta, Śrīdhara, Mahāvīra, Padmanābha and other predecessors.
He was born in a Deśastha Rigvedi Brahmin family near Vijjadavida. Bhāskara is said to have been the head of an astronomical observatory at Ujjain, the leading mathematical centre of medieval India. He lived in the Sahyadri region.
History records his great-great-great-grandfather holding a hereditary post as a court scholar, as did his son and other descendants. His father Maheśvara was a mathematician, astronomer and astrologer, who taught him mathematics, which he later passed on to his son Loksamudra. Loksamudra's son helped to set up a school in 1207 for the study of Bhāskara's writings. He died in 1185 CE.

The ''Siddhānta-Śiromani''

Līlāvatī

The first section Līlāvatī, named after his daughter, consists of 277 verses. It covers calculations, progressions, measurement, permutations, and other topics.

Bijaganita

The second section Bījagaṇita has 213 verses. It discusses zero, infinity, positive and negative numbers, and indeterminate equations including Pell's equation, solving it using a kuṭṭaka method. In particular, he also solved the case that was to elude Fermat and his European contemporaries centuries later.

Grahaganita

In the third section Grahagaṇita, while treating the motion of planets, he considered their instantaneous speeds. He arrived at the approximation:
In his words:
This result had also been observed earlier by Muñjalācārya mānasam'', in the context of a table of sines.
Bhāskara also stated that at its highest point a planet's instantaneous speed is zero.

Mathematics

Some of Bhaskara's contributions to mathematics include the following:
Bhaskara's arithmetic text Līlāvatī covers the topics of definitions, arithmetical terms, interest computation, arithmetical and geometrical progressions, plane geometry, solid geometry, the shadow of the gnomon, methods to solve indeterminate equations, and combinations.
Līlāvatī is divided into 13 chapters and covers many branches of mathematics, arithmetic, algebra, geometry, and a little trigonometry and measurement. More specifically the contents include:
His work is outstanding for its systematisation, improved methods and the new topics that he introduced. Furthermore, the Lilavati contained excellent problems and it is thought that Bhaskara's intention may have been that a student of 'Lilavati' should concern himself with the mechanical application of the method.

Algebra

His Bījaganita was a work in twelve chapters. It was the first text to recognize that a positive number has two square roots. His work Bījaganita is effectively a treatise on algebra and contains the following topics:
Bhaskara derived a cyclic, chakravala method for solving indeterminate quadratic equations of the form ax2 + bx + c = y. Bhaskara's method for finding the solutions of the problem Nx2 + 1 = y2 is of considerable importance.

Trigonometry

The Siddhānta Shiromani demonstrates Bhaskara's knowledge of trigonometry, including the sine table and relationships between different trigonometric functions. He also developed spherical trigonometry, along with other interesting trigonometrical results. In particular Bhaskara seemed more interested in trigonometry for its own sake than his predecessors who saw it only as a tool for calculation. Among the many interesting results given by Bhaskara, results found in his works include computation of sines of angles of 18 and 36 degrees, and the now well known formulae for and.

Calculus

His work, the Siddhānta Shiromani, is an astronomical treatise and contains many theories not found in earlier works. Preliminary concepts of infinitesimal calculus and mathematical analysis, along with a number of results in trigonometry, differential calculus and integral calculus that are found in the work are of particular interest.
Evidence suggests Bhaskara was acquainted with some ideas of differential calculus. Bhaskara also goes deeper into the 'differential calculus' and suggests the differential coefficient vanishes at an extremum value of the function, indicating knowledge of the concept of 'infinitesimals'.
Madhava and the Kerala School mathematicians from the 14th century to the 16th century expanded on Bhaskara's work and further advanced the development of calculus in India.

Astronomy

Using an astronomical model developed by Brahmagupta in the 7th century, Bhāskara accurately defined many astronomical quantities, including, for example, the length of the sidereal year, the time that is required for the Earth to orbit the Sun, as approximately 365.2588 days which is the same as in Suryasiddhanta. The modern accepted measurement is 365.25636 days, a difference of just 3.5 minutes.
His mathematical astronomy text Siddhanta Shiromani is written in two parts: the first part on mathematical astronomy and the second part on the sphere.
The twelve chapters of the first part cover topics such as:
The second part contains thirteen chapters on the sphere. It covers topics such as:
The earliest reference to a perpetual motion machine date back to 1150, when Bhāskara II described a wheel that he claimed would run forever.
Bhāskara II used a measuring device known as Yaṣṭi-yantra. This device could vary from a simple stick to V-shaped staffs designed specifically for determining angles with the help of a calibrated scale.

Legends

In his book Lilavati, he reasons: "In this quantity also which has zero as its divisor there is no change even when many quantities have entered into it or come out , just as at the time of destruction and creation when throngs of creatures enter into and come out of the infinite and unchanging ".

"Behold!"

It has been stated, by several authors, that Bhaskara II proved the Pythagorean theorem by drawing a diagram and providing the single word "Behold!". Sometimes Bhaskara's name is omitted and this is referred to as the Hindu proof, well known by schoolchildren.
However, as mathematics historian Kim Plofker points out, after presenting a worked out example, Bhaskara II states the Pythagorean theorem:
Hence, for the sake of brevity, the square root of the sum of the squares of the arm and upright is the hypotenuse: thus it is demonstrated.

This is followed by:

And otherwise, when one has set down those parts of the figure there seeing .

Plofker suggests that this additional statement may be the ultimate source of the widespread "Behold!" legend.