Madhava of Sangamagrama
Mādhava was an Indian mathematician and astronomer from the town believed to be present-day Aloor, Irinjalakuda in Thrissur District, Kerala, India. He is considered the founder of the Kerala school of astronomy and mathematics. One of the greatest mathematician-astronomers of the Middle Ages, Madhava made pioneering contributions to the study of infinite series, calculus, trigonometry, geometry, and algebra. He was the first to use infinite series approximations for a range of trigonometric functions, which has been called the "decisive step onward from the finite procedures of ancient mathematics to treat their limit-passage to infinity".
Some scholars have also suggested that Madhava's work, through the writings of the Kerala school, was transmitted to Europe via Jesuit missionaries and traders who were active around the ancient port of Muziris at the time. As a result, it may have had an influence on later European developments in analysis and calculus.
Historiography
Although there is some evidence of mathematical work in Kerala prior to Madhava, it is clear from citations that Madhava provided the creative impulse for the development of a rich mathematical tradition in medieval Kerala. However, except for a couple, most of Madhava's original works have been lost. He is referred to in the work of subsequent Kerala mathematicians, particularly in Nilakantha Somayaji's Tantrasangraha, as the source for several infinite series expansions, including sin θ and arctan θ. The 16th-century text Mahajyānayana prakāra cites Madhava as the source for several series derivations for π. In Jyeṣṭhadeva's Yuktibhāṣā, written in Malayalam, these series are presented with proofs in terms of the Taylor series expansions for polynomials like 1/, with x = tanθ, etc.Thus, what is explicitly Madhava's work is a source of some debate. The Yukti-dipika, possibly composed by Sankara Variyar, a student of Jyeṣṭhadeva, presents several versions of the series expansions for sin θ, cos θ, and arctan θ, as well as some products with radius and arclength, most versions of which appear in Yuktibhāṣā. For those that do not, Rajagopal and Rangachari have argued, quoting extensively from the original Sanskrit, that since some of these have been attributed by Nilakantha to Madhava, some of the other forms might also be the work of Madhava.
Others have speculated that the early text Karanapaddhati, or the Mahajyānayana prakāra was written by Madhava, but this is unlikely.
Karanapaddhati, along with the even earlier Keralese mathematics text Sadratnamala, as well as the Tantrasangraha and Yuktibhāṣā, were considered in an 1834 article by Charles Matthew Whish, which was the first to draw attention to their priority over Newton in discovering the Fluxion. In the mid-20th century, the Russian scholar Jushkevich revisited the legacy of Madhava, and a comprehensive look at the Kerala school was provided by Sarma in 1972.
Lineage
There are several known astronomers who preceded Madhava, including Kǖţalur Kizhār, Vararuci, and Sankaranarayana. It is possible that other unknown figures preceded him. However, we have a clearer record of the tradition after Madhava. Parameshvara was a direct disciple. According to a palm leaf manuscript of a Malayalam commentary on the Surya Siddhanta, Parameswara's son Damodara had Nilakantha Somayaji as one of his disciples. Jyeshtadeva was a disciple of Nilakantha. Achyuta Pisharati ofTrikkantiyur is mentioned as a disciple of Jyeṣṭhadeva, and the grammarian Melpathur Narayana Bhattathiri as his disciple.
Contributions
If we consider mathematics as a progression from finite processes of algebra to considerations of the infinite, then the first steps towards this transition typically come with infinite series expansions. It is this transition to the infinite series that is attributed to Madhava. In Europe, the first such series were developed by James Gregory in 1667. Madhava's work is notable for the series, but what is truly remarkable is his estimate of an error term. This implies that he understood very well the limit nature of the infinite series. Thus, Madhava may have invented the ideas underlying infinite series expansions of functions, power series, trigonometric series, and rational approximations of infinite series.However, as stated above, which results are precisely Madhava's and which are those of his successors is difficult to determine. The following presents a summary of results that have been attributed to Madhava by various scholars.
Infinite series
Among his many contributions, he discovered infinite series for the trigonometric functions of sine, cosine, tangent and arctangent, and many methods for calculating the circumference of a circle. One of Madhava's series is known from the text Yuktibhāṣā, which contains the derivation and proof of the power series for inverse tangent, discovered by Madhava. In the text, Jyeṣṭhadeva describes the series in the following manner:This yields:
or equivalently:
This series is Gregory's series. Even if we consider this particular series as the work of Jyeṣṭhadeva, it would pre-date Gregory by a century, and certainly other infinite series of a similar nature had been worked out by Madhava. Today, it is referred to as the Madhava-Gregory-Leibniz series.
Trigonometry
Madhava composed an accurate table of sines. Marking a quarter circle at twenty-four equal intervals, he gave the lengths of the half-chord corresponding to each of them. It is believed that he may have computed these values based on the series expansions:The value of π (pi)
Madhava's work on the value of the mathematical constant Pi is cited in the Mahajyānayana prakāra. While some scholars such as Sarma feel that this book may have been composed by Madhava himself, it is more likely the work of a 16th-century successor. This text attributes most of the expansions to Madhava, and givesthe following infinite series expansion of π, now known as the Madhava-Leibniz series:
which he obtained from the power series expansion of the arc-tangent function. However, what is most impressive is that he also gave a correction term, Rn, for the error after computing the sum up to n terms.
Madhava gave three expressions for a correction term Rn, to be appended to the sum of n terms, namely
where the third correction leads to highly accurate computations of π.
It has long been speculated how Madhava found these correction terms. They are the first three convergents of a finite continued fraction which, when combined with the original Madhava's series evaluated to n terms, yields about 3n/2 correct digits:
The absolute value of the correction term in next higher order is
He also gave a more rapidly converging series by transforming the original infinite series of π, obtaining the infinite series
By using the first 21 terms to compute an approximation of π, he obtains a value correct to 11 decimal places.
The value of
3.1415926535898, correct to 13 decimals, is sometimes attributed to Madhava,
but may be due to one of his followers. These were the most accurate approximations of π given since the 5th century.
The text Sadratnamala appears to give the astonishingly accurate value of π = 3.14159265358979324. Based on this, R. Gupta has suggested that this text was also composed by Madhava.
Madhava also carried out investigations into other series for arc lengths and the associated approximations to rational fractions of π, found methods of polynomial expansion, discovered tests of convergence of infinite series, and the analysis of infinite continued fractions.
He also discovered the solutions of transcendental equations by iteration, and found the approximation of transcendental numbers by continued fractions.
Calculus
Madhava laid the foundations for the development of calculus, which were further developed by his successors at the Kerala school of astronomy and mathematics. Madhava also extended some results found in earlier works, including those of Bhāskara II. It is uncertain, however, whether any of these ideas were transmitted to the West, where calculus was developed independently by Isaac Newton and Leibniz.Madhava's works
has identified Madhava as the author of the following works:- Golavada
- Madhyamanayanaprakara
- Mahajyanayanaprakara
- Lagnaprakarana
- Venvaroha
- Sphutacandrapti
- Aganita-grahacara
- Chandravakyani
Kerala School of Astronomy and Mathematics
which translates as the integral of a variable equals half that
variable squared ; i.e. The integral of x dx is equal to
x2 / 2. This is clearly a start to the process of integral calculus.
A related result states that the area under a curve is its integral. Most of these results pre-date similar results in Europe by several centuries.
In many senses,
Jyeshthadeva's Yuktibhāṣā may be considered the world's first calculus text.
The group also did much other work in astronomy; indeed many more pages are developed to astronomical computations than are for discussing analysis related results.
The Kerala school also contributed much to linguistics. The ayurvedic and poetic traditions of Kerala can also be traced back to this school. The famous poem, Narayaneeyam, was composed by Narayana Bhattathiri.
Influence
Madhava has been called "the greatest mathematician-astronomer of medieval India", or as"the founder of mathematical analysis; some of his discoveries in this field show him to have possessed extraordinary intuition." O'Connor and Robertson state that a fair assessment of Madhava is that
he took the decisive step towards modern classical analysis.