Bhaskara I's sine approximation formula
In mathematics, Bhaskara I's sine approximation formula is a rational expression in one variable for the computation of the approximate values of the trigonometric sines discovered by Bhaskara I, a seventh-century Indian mathematician.
This formula is given in his treatise titled Mahabhaskariya. It is not known how Bhaskara I arrived at his approximation formula. However, several historians of mathematics have put forward different hypotheses as to the method Bhaskara might have used to arrive at his formula. The formula is elegant, simple and enables one to compute reasonably accurate values of trigonometric sines without using any geometry whatsoever.
The approximation formula
The formula is given in verses 17 - 19, Chapter VII, Mahabhaskariya of Bhaskara I. A translation of the verses is given below:- I briefly state the rule without making use of the Rsine-differences 225, etc. Subtract the degrees of a bhuja from the degrees of a half circle. Then multiply the remainder by the degrees of the bhuja or koti and put down the result at two places. At one place subtract the result from 40500. By one-fourth of the remainder, divide the result at the other place as multiplied by the 'anthyaphala. Thus is obtained the entire bahuphala for the sun, moon or the star-planets. So also are obtained the direct and inverse Rsines.
Equivalent forms of the formula
Bhaskara I's sine approximation formula can be expressed using the radian measure of angles as follows.For a positive integer n this takes the following form:
The formula acquires an even simpler form when expressed in terms of the cosine rather than the sine. Using radian measure for angle, and putting, one gets
The assonance of "" and "" makes this expression especially pleasing as a mnemonic.
To express the previous formula with the constant one can use
Equivalent forms of Bhaskara I's formula have been given by almost all subsequent astronomers and mathematicians of India. For example, Brahmagupta's
Brhma-Sphuta-Siddhanta gives the formula in the following form:
Also, Bhaskara II has given this formula in his Lilavati in the following form:
Accuracy of the formula
The formula is applicable for values of x° in the range from 0 to 180. The formula is remarkably accurate in this range. The graphs of sin and the approximation formula are indistinguishable and are nearly identical. One of the accompanying figures gives the graph of the error function, namely the function,in using the formula. It shows that the maximum absolute error in using the formula is around 0.0016. From a plot of the percentage value of the absolute error, it is clear that the maximum percentage error is less than 1.8. The approximation formula thus gives sufficiently accurate values of sines for most practical purposes. However it was not sufficient for the more accurate computational requirements of astronomy. The search for more accurate formulas by Indian astronomers eventually led to the discovery the power series expansions of sin x and cos x by Madhava of Sangamagrama, the founder of the Kerala school of astronomy and mathematics.
Derivation of the formula
Bhaskara I had not indicated any method by which he arrived at his formula. Historians have speculated on various possibilities. No definitive answers have as yet been obtained. Beyond its historical importance of being a prime example of the mathematical achievements of ancient Indian astronomers, the formula is of significance from a modern perspective also. Mathematicians have attempted to derive the rule using modern concepts and tools. Around half a dozen methods have been suggested, each based on a separate set of premises. Most of these derivations use only elementary concepts.Derivation based on elementary geometry
Let the circumference of a circle be measured in degrees and let the radius R of the circle be also measured in degrees. Choosing a fixed diameter AB and an arbitrary point P on the circle and dropping the perpendicular PM to AB, we can compute the area of the triangle APB in two ways. Equating the two expressions for the area one gets AB × PM = AP × BP. This givesLetting x be the length of the arc AP, the length of the arc BP is 180 - x. These arcs are much bigger than the respective chords. Hence one gets
One now seeks two constants α and β such that
It is indeed not possible to obtain such constants. However one may choose values for α and β so that the above expression is valid for two chosen values of the arc length x. Choosing 30° and 90° as these values and solving the resulting equations, one immediately gets Bhaskara I's sine approximation formula.
Derivation starting with a general rational expression
Assuming that x is in radians, one may seek an approximation to sin in the following form:The constants a, b, c, p, q and r can be determined by assuming that the formula must be exactly valid when x = 0, π/6, π/2, π, and further assuming that it has to satisfy the property that sin = sin. This procedure produces the formula expressed using radian measure of angles.
An elementary argument
The part of the graph of sin in the range from 0° to 180° "looks like" part of a parabola through the points and. The general such parabola isThe parabola that also passes through is
The parabola which also passes through is
These expressions suggest a varying denominator which takes the value 90 × 90 when x = 90 and the value 2 × 30 × 150 when x = 30. That this expression should also be symmetrical about the line ' x = 90' rules out the possibility of choosing a linear expression in x. Computations involving x might immediately suggest that the expression could be of the form
A little experimentation will yield the values a = 5/4, b = −1/4. These give Bhaskara I's sine approximation formula.
Further references
- R.C..Gupta, On derivation of Bhaskara I's formula for the sine, Ganita Bharati 8 , 39-41.
- T. Hayashi, A note on Bhaskara I's rational approximation to sine, Historia Sci. No. 42, 45-48.
- K. Stroethoff, Bhaskara's approximation for the sine, The Mathematics Enthusiast, Vol. 11, No. 3, 485-492.