Carbon-neutral fuel
Carbon-neutral fuel is energy fuel or energy systems which have no net greenhouse gas emissions or carbon footprint. One class is synthetic fuel produced from renewable, sustainable or nuclear energy used to hydrogenate carbon dioxide directly captured from the air, recycled from power plant flue exhaust gas or derived from carbonic acid in seawater. Renewable energy sources include wind turbines, solar panels, and hydroelectric powerful power stations.
Another type of renewable energy source is biofuel.
Such fuels are potentially carbon-neutral because they do not result in a net increase in atmospheric greenhouse gases.
To the extent that carbon-neutral fuels displace fossil fuels, or if they are produced from waste carbon or seawater carbonic acid, and their combustion is subject to carbon capture at the flue or exhaust pipe, they result in negative carbon dioxide emission and net carbon dioxide removal from the atmosphere, and thus constitute a form of greenhouse gas remediation.
Such power to gas carbon-neutral and carbon-negative fuels can be produced by the electrolysis of water to make hydrogen. Through the Sabatier reaction methane can then be produced which may then be stored to be burned later in power plants, transported by pipeline, truck, or tanker ship, or be used in gas to liquids processes such as the Fischer–Tropsch process to make traditional fuels for transportation or heating.
Other carbon-negative fuels include synthetic fuels made from CO2 extracted from the atmosphere. Some companies are working on this.
Similar to regular biofuels, carbon-negative fuels only remain carbon-negative as long as the fuel is not combusted. Upon combustion, the carbon they contain is released again into the atmosphere. The time between fuel production and combustion of the fuel can thus be quite short (far shorter than the 100 year storage time set for afforestation/reforestation projects under the Kyoto Protocol. or even underground carbon storage.
Carbon-neutral fuels are used in Germany and Iceland for distributed storage of renewable energy, minimizing problems of wind and solar intermittency, and enabling transmission of wind, water, and solar power through existing natural gas pipelines. Such renewable fuels could alleviate the costs and dependency issues of imported fossil fuels without requiring either electrification of the vehicle fleet or conversion to hydrogen or other fuels, enabling continued compatible and affordable vehicles. A 250 kilowatt synthetic methane plant has been built in Germany and it is being scaled up to 10 megawatts.
Carbon credits can also play an important role for carbon-negative fuels.
Production
Carbon-neutral fuels are synthetic hydrocarbons. They can be produced in chemical reactions between carbon dioxide, which can be captured from power plants or the air, and hydrogen, which is created by the electrolysis of water using renewable energy. The fuel, often referred to as electrofuel, stores the energy that was used in the production of the hydrogen. Coal can also be used to produce the hydrogen, but that would not be a carbon-neutral source. Carbon dioxide can be captured and buried, making fossil fuels carbon-neutral, although not renewable. Carbon capture from exhaust gas can make carbon-neutral fuels carbon negative. Other hydrocarbons can be broken down to produce hydrogen and carbon dioxide which could then be stored while the hydrogen is used for energy or fuel, which would also be carbon-neutral.The most energy-efficient fuel to produce is hydrogen gas, which can be used in hydrogen fuel cell vehicles, and which requires the fewest process steps to produce.
There are a few more fuels that can be created using hydrogen. Formic acid for example can be made by reacting the hydrogen with CO2. Formic acid combined with CO2 can form isobutanol.
Methanol can be made from a chemical reaction of a carbon-dioxide molecule with three hydrogen molecules to produce methanol and water. The stored energy can be recovered by burning the methanol in a combustion engine, releasing carbon dioxide, water, and heat. Methane can be produced in a similar reaction. Special precautions against methane leaks are important since methane is nearly 100 times as potent as CO2, in terms of Global warming potential. More energy can be used to combine methanol or methane into larger hydrocarbon fuel molecules.
Researchers have also suggested using methanol to produce dimethyl ether. This fuel could be used as a substitute for diesel fuel due to its ability to self ignite under high pressure and temperature. It is already being used in some areas for heating and energy generation. It is nontoxic, but must be stored under pressure. Larger hydrocarbons and ethanol can also be produced from carbon dioxide and hydrogen.
All synthetic hydrocarbons are generally produced at temperatures of 200–300 °C, and at pressures of 20 to 50 bar. Catalysts are usually used to improve the efficiency of the reaction and create the desired type of hydrocarbon fuel. Such reactions are exothermic and use about 3 mol of hydrogen per mole of carbon dioxide involved. They also produce large amounts of water as a byproduct.
Renewable and nuclear energy costs
Nighttime wind power is considered the most economical form of electrical power with which to synthesize fuel, because the load curve for electricity peaks sharply during the warmest hours of the day, but wind tends to blow slightly more at night than during the day. Therefore, the price of nighttime wind power is often much less expensive than any alternative. Off-peak wind power prices in high wind penetration areas of the U.S. averaged 1.64 cents per kilowatt-hour in 2009, but only 0.71 cents/kWh during the least expensive six hours of the day. Typically, wholesale electricity costs 2 to 5 cents/kWh during the day. Commercial fuel synthesis companies suggest they can produce gasoline for less than petroleum fuels when oil costs more than $55 per barrel.In 2010, a team of process chemists led by Heather Willauer of the U.S. Navy, estimates that 100 megawatts of electricity can produce of jet fuel per day and shipboard production from nuclear power would cost about. While that was about twice the petroleum fuel cost in 2010, it is expected to be much less than the market price in less than five years if recent trends continue. Moreover, since the delivery of fuel to a carrier battle group costs about, shipboard production is already much less expensive.
Willauer said seawater is the "best option" for a source of synthetic jet fuel. By April 2014, Willauer's team had not yet made fuel to the standard required by military jets, but they were able in September 2013 to use the fuel to fly a radio-controlled model airplane powered by a common two-stroke internal combustion engine. Because the process requires a large input of electrical energy, a plausible first step of implementation would be for American nuclear-powered aircraft carriers to manufacture their own jet fuel. The U.S. Navy is expected to deploy the technology some time in the 2020s.
Demonstration projects and commercial development
A 250 kilowatt methane synthesis plant was constructed by the Center for Solar Energy and Hydrogen Research at Baden-Württemberg and the Fraunhofer Society in Germany and began operating in 2010. It is being upgraded to 10 megawatts, scheduled for completion in autumn, 2012.The George Olah carbon dioxide recycling plant operated by Carbon Recycling International in Grindavík, Iceland has been producing 2 million liters of methanol transportation fuel per year from flue exhaust of the Svartsengi Power Station since 2011. It has the capacity to produce 5 million liters per year.
Audi has constructed a carbon-neutral liquefied natural gas plant in Werlte, Germany. The plant is intended to produce transportation fuel to offset LNG used in their A3 Sportback g-tron automobiles, and can keep 2,800 metric tons of CO2 out of the environment per year at its initial capacity.
Commercial developments are taking place in Columbia, South Carolina, Camarillo, California, and Darlington, England. A demonstration project in Berkeley, California proposes synthesizing both fuels and food oils from recovered flue gases.
Greenhouse gas remediation
Carbon-neutral fuels can lead to greenhouse gas remediation because carbon dioxide gas would be reused to produce fuel instead of being released into the atmosphere. Capturing the carbon dioxide in flue gas emissions from power plants would eliminate their greenhouse gas emissions, although burning the fuel in vehicles would release that carbon because there is no economical way to capture those emissions. This approach would reduce net carbon dioxide emission by about 50% if it were used on all fossil fuel power plants. Most coal and natural gas power plants have been predicted to be economically retrofittable with carbon dioxide scrubbers for carbon capture to recycle flue exhaust or for carbon sequestration. Such recycling is expected to not only cost less than the excess economic impacts of climate change if it were not done, but also to pay for itself as global fuel demand growth and peak oil shortages increase the price of petroleum and fungible natural gas.Capturing CO2 directly from the air or extracting carbonic acid from seawater would also reduce the amount of carbon dioxide in the environment, and create a closed cycle of carbon to eliminate new carbon dioxide emissions. Use of these methods would eliminate the need for fossil fuels entirely, assuming that enough renewable energy could be generated to produce the fuel. Using synthetic hydrocarbons to produce synthetic materials such as plastics could result in permanent sequestration of carbon from the atmosphere.
Technologies
Traditional fuels, methanol or ethanol
Some authorities have recommended producing methanol instead of traditional transportation fuels. It is a liquid at normal temperatures and can be toxic if ingested. Methanol has a higher octane rating than gasoline but a lower energy density, and can be mixed with other fuels or used on its own. It may also be used in the production of more complex hydrocarbons and polymers. Direct methanol fuel cells have been developed by Caltech's Jet Propulsion Laboratory to convert methanol and oxygen into electricity. It is possible to convert methanol into gasoline, jet fuel or other hydrocarbons, but that requires additional energy and more complex production facilities. Methanol is slightly more corrosive than traditional fuels, requiring automobile modifications on the order of US$100 each to use it.In 2016, a method using carbon spikes, copper nanoparticles and nitrogen that converts carbon dioxide to ethanol was developed.
Microalgae
Microalgae is a potential carbon neutral fuel, but efforts to turn it into one have been unsuccessful so far. Microalgae are aquatic organisms living in a large and diverse group. They are unicellular organisms that do not have complex cell structures like plants. However, they are still photo autotrophic, able to use solar energy to convert chemical forms via photosynthesis. They are typically found in freshwater and marine system and there are approximately 50,000 species that has been found.Microalgae will be a huge substitute for the needs of fuel in the era of global warming. Growing microalgae is important in supporting the global movement of reducing global CO2 emissions. Microalgae has a better ability, compared to conventional biofuel crops, in acting as a CO2fixation source as they convert CO2 into biomass via photosynthesis at higher rates. Microalgae is a better CO2 converter than conventional biofuel crops.
With that being said, a considerable interest to cultivate microalgae has been increasing in the past several years. Microalgae is seen as a potential feedstock for biofuel production as their ability to produce polysaccharides and triglycerides which are both raw materials for bioethanol and biodiesel fuel. Microalgae also can be used as a livestock feed due to their proteins. Even more, some species of microalgae produce valuable compounds such as pigments and pharmaceuticals.
Production
Two main ways of cultivating microalgae are raceway pond systems and photo-bioreactors. Raceway pond systems are constructed by a closed loop oval channel that has a paddle wheel to circulate water and prevent sedimentation. The channel is open to the air and its depth is in the range of. The pond needs to be kept shallow since self-shading and optical absorption can cause the limitation of light penetration through the solution of algae broth. PBRs's culture medium is constructed by closed transparent array of tubes. It has a central reservoir which circulated the microalgae broth. PBRs is an easier system to be controlled compare to the raceway pond system, yet it costs a larger overall production expenses.The carbon emissions from microalgae biomass produced in raceway ponds could be compared to the emissions from conventional biodiesel by having inputs of energy and nutrients as carbon intensive. The corresponding emissions from microalgae biomass produced in PBRs could also be compared and might even exceed the emissions from conventional fossil diesel. The inefficiency is due to the amount of electricity used to pump the algae broth around the system. Using co-product to generate electricity is one strategy that might improve the overall carbon balance. Another thing that needs to be acknowledged is that environmental impacts can also come from water management, carbon dioxide handling, and nutrient supply, several aspects that could constrain system design and implementation options. But, in general, Raceway Pond systems demonstrate a more attractive energy balance than PBR systems.
Economy
Production cost of microalgae-biofuel through implementation of raceway pond systems is dominated by the operational cost which includes labour, raw materials, and utilities. In raceway pond system, during the cultivation process, electricity takes up the largest energy fraction of total operational energy requirements. It is used to circulate the microalgae cultures. It takes up an energy fraction ranging from 22% to 79%. In contrast, capital cost dominates the cost of production of microalgae-biofuel in PBRs. This system has a high installation cost though the operational cost is relatively lower than raceway pond systems.Microalgae-biofuel production costs a larger amount of money compared to fossil fuel production. The cost estimation of producing microalgae-biofuel is around. Meanwhile, data provided by California Energy Commission shows that fossil fuel production in California costs by October, 2018. This price ratio leads many to choose fossil fuel for economic reasons, even as this results in increased emissions of carbon dioxide and other greenhouse gases. Advancement in renewable energy is being developed to reduce this production cost.
Environmental impact
There are several known environmental impacts of cultivating microalgae:Water resource
There could be an increasing demand of fresh water as microalgaes are aquatic organisms. Fresh water is used to compensate evaporation in raceway pond systems. It is used for cooling purpose. Using recirculating water might compensate for the needs of the water but it comes with a greater risk of infection and inhibition: bacteria, fungi, viruses. These inhibitors are found in greater concentrations in recycled waters along with non-living inhibitors such as organic and inorganic chemicals and remaining metabolites from destroyed microalgae cells.Algae toxicity
Many microalgae species could produce some toxins in some point in their life cycle. These algae toxins may be important and valuable products in their applications in biomedical, toxicological and chemical research. However, they also come with negative effects. These toxins can be either acute or chronic. The acute example is the paralytic shellfish poisoning that may cause death. One of the chronic one is the carcinogenic and ulcerative tissue slow changes caused by carrageenan toxins produced in red tides. Since the high variability of toxins producing microalgae species, the presence or absence of toxins in a pond will not always be able to be predicted. It all depends on the environment and ecosystem condition.Diesel from water and carbon dioxide
Audi has co-developed E-diesel, a carbon-neutral fuel with a high cetane number.It is also working on E-benzin, which is created using a similar process