Cavalier-Smith's system of classification


The biological classification system of life introduced by British zoologist Thomas Cavalier-Smith involves systematic arrangements of all life forms on earth. Following and improving the classification systems introduced by Carl Linnaeus, Ernst Haeckel, Robert Whittaker, and Carl Woese, Cavalier-Smith's classification attempts to incorporate the latest developments in taxonomy. His classification has been a major foundation in modern taxonomy, particularly with revisions and reorganisations of kingdoms and phyla.
Cavalier-Smith has published extensively on the classification of protists. One of his major contributions to biology was his proposal of a new kingdom of life: the Chromista, although the usefulness of the grouping is questionable given that it is generally agreed to be an arbitrary grouping of taxa. He also proposed that all chromista and alveolata share the same common ancestor, a claim later refuted by studies of morphological and molecular evidence by other labs. He named this new group the Chromalveolates. He also proposed and named many other high-rank taxa, like Opisthokonta, Rhizaria, and Excavata, though he himself consistently does not include Opisthonkonta as a formal taxon in his schemes. Together with Chromalveolata, Amoebozoa, and Archaeplastida the six formed the basis of the taxonomy of eukaryotes in the middle 2000s. He has also published prodigiously on issues such as the origin of various cellular organelles, genome size evolution, and endosymbiosis. Though fairly well known, many of his claims have been controversial and have not gained widespread acceptance in the scientific community to date. Most recently, he has published a paper citing the paraphyly of his bacterial kingdom, the origin of Neomura from Actinobacteria and taxonomy of prokaryotes.
According to Palaeos.com:

Prof. Cavalier-Smith of Oxford University has produced a large body of work which is well regarded. Still, he is controversial in a way that is a bit difficult to describe. The issue may be one of writing style. Cavalier-Smith has a tendency to make pronouncements where others would use declarative sentences, to use declarative sentences where others would express an opinion, and to express opinions where angels would fear to tread. In addition, he can sound arrogant, reactionary, and even perverse. On the other , he has a long history of being right when everyone else was wrong. To our way of thinking, all of this is overshadowed by one incomparable virtue: the fact that he will grapple with the details. This makes for very long, very complex papers and causes all manner of dark murmuring, tearing of hair, and gnashing of teeth among those tasked with trying to explain his views of early life. See, , Zrzavý Patterson. Nevertheless, he deals with all of the relevant facts.

Eight kingdoms model

The first two kingdoms of life: Plantae and Animalia

The use of the word "kingdom" to describe the living world dates as far back as Linnaeus who divided the natural world into three kingdoms: animal, vegetable, and mineral. The classifications "animal kingdom" and "plant kingdom" remain in use by modern evolutionary biologists. The protozoa were originally classified as members of the animal kingdom. Now they are classified as multiple separate groups.

The third kingdom: Protista

By mid-nineteenth century, microscopic organisms were generally classified into four groups:
  1. Protozoa,
  2. Protophyta,
  3. Phytozoa, and
In 1858, Richard Owen proposed that the animal phylum Protozoa be elevated to the status of kingdom. In 1860, John Hogg proposed that protozoa and protophyta be grouped together into a new kingdom which he called "Regnum Primigenum". According to Hogg, this new classification scheme prevented "the unnecessary trouble of contending about their supposed natures, and of uselessly trying to distinguish the Protozoa from the Protophyta". In 1866, Ernst Haeckel proposed the name "Protista" for the primigenial kingdom and included bacteria in this third kingdom of life.

The fourth kingdom: Fungi

By 1959, Robert Whittaker proposed that fungi, which were formerly classified as plants, be given their own kingdom. Therefore, he divided life into four kingdoms such as:
  1. Protista, ;
  2. Plantae, ;
  3. Fungi; and
  4. Animalia.
Whittaker subdivided the Protista into two subkingdoms:
  1. Monera and
  2. Eunucleata.

    The fifth kingdom: Bacteria (Monera)

Bacteria are fundamentally different from the eukaryotes. Eukaryotes have cell nuclei, bacteria do not. In 1969, Whittaker elevated the bacteria to the status of kingdom. His new classification system divided the living world into five kingdoms:
  1. Plantae,
  2. Animalia,
  3. Protista,
  4. Fungi, and
  5. Monera.

    The sixth kingdom: Archaebacteria

The kingdom Monera can be divided into two distinct groups: eubacteria and archaebacteria. In 1977 Carl Woese and George E. Fox established that archaebacteria were genetically different from bacteria so that life could be divided into three principle lineages, namely:
  1. Eubacteria,
  2. Archaebacteria, and
  3. Urkaryotes.
In 1990, Woese introduced domain above kingdom by creating three-domain system such as:
  1. Bacteria,
  2. Archaea, and
  3. Eucarya.
But Cavalier-Smith considered Archaebacteria as a kingdom.

The seventh kingdom: Chromista

By 1981, Cavalier-Smith had divided the all the eukaryotes into nine kingdoms. In it, he created Chromista for a separate kingdom of some protists.
Most chromists are photosynthetic. This distinguishes them from most other protists which lack photosynthesis. In both plants and chromists photosynthesis takes place in chloroplasts. In plants, however, the chloroplasts are located in the cytosol while in chromists the chloroplasts are located in the lumen of their rough endoplasmic reticulum. This distinguishes chromists from plants.
Based on the addition of Chromista as a kingdom, he suggested that even with his nine kingdoms of eukaryotes, "the best one for general scientific use is a system of seven kingdoms", which includes:
  1. Plantae,
  2. Animalia,
  3. Protozoa,
  4. Chromista
  5. Fungi,
  6. Eubacteria, and
  7. Archaebacteria.

    The eighth kingdom: Archezoa

In 1983, Cavalier-Smith introduced Archezoa for primitive protists that lack mitochondria. He originally considered it as a subkingdom, but by 1989, with the establishment of Chromista as separate kingdom, he treated it as a kingdom.
Archezoa is now defunct. He now assigns former members of the kingdom Archezoa to the phylum Amoebozoa.

Kingdom Protozoa ''sensu'' Cavalier-Smith

Cavalier-Smith referred to what remained of the protist kingdom, after he removed the kingdoms Archezoa and Chromista, as the "kingdom Protozoa". In 1993, this kingdom contained 18 phyla as summarized in the following table:
#PhylumAssigned to:CharacteristicsFate
1Percolozoasubkingdom Adictyozoalacks Golgi dictyosomes
2Parabasaliasubkingdom Dictyozoa
branch Parabasalia
has Golgi dictyosomes
lacks mitochondria
3Euglenozoasubkingdom Dictyozoa
branch Bikonta
infrakingdom Euglenozoa
has Golgi dictyosomes mostly with mitochondria
with trans-splicing of
miniexons
4Opalozoa subkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Ciliomyxa
superphylum Opalomyxa
has Golgi dictyosomes tubular mitochondrial cristae with cis-spliced introns
predominantly ciliated,
no cortical alveoli
5Mycetozoa subkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Ciliomyxa
superphylum Opalomyxa
has Golgi dictyosomes tubular mitochondrial cristae
with cis-spliced introns
predominantly ciliated,
no cortical alveoli
6Choanozoa subkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Ciliomyxa
superphylum Choanozoa
has Golgi dictyosomes flattened mitochondrial cristae
with cis-spliced introns
predominantly ciliated,
no cortical alveoli
7Dinozoa subkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Alveolata
superphylum Miozoa
has Golgi dictyosomes tubular mitochondrial cristae
with cis-spliced introns
with cortical alveoli
Reassigned to Miozoa in Alveolata.
8Apicomplexasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Alveolata
superphylum Miozoa
has Golgi dictyosomes tubular mitochondrial cristae
with cis-spliced introns
with cortical alveoli
Reassigned to Miozoa in Alveolata.
9Ciliophorasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Alveolata
superphylum Heterokaryota
has Golgi dictyosomes tubular mitochondrial cristae
with cis-spliced introns
with cortical alveoli
Reassigned to Alveolata.
10Rhizopoda subkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Neosarcodina
has Golgi dictyosomes usually with tubular cristae
with cis-spliced introns
11Reticulosa subkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Neosarcodina
has Golgi dictyosomes usually with tubular cristae
with cis-spliced introns
12Heliozoasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Actinopoda
has Golgi dictyosomes mostly with mitochondria
with cis-spliced introns
has axopodia
13Radiozoasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Actinopoda
has Golgi dictyosomes mostly with mitochondria
with cis-spliced introns
has axopodia
14Entamoebiasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Entamoebia
has Golgi dictyosomes
with cis-spliced introns
no mitochondria, peroxisomes, hydrogenosomes or cilia transient intranuclear centrosomes
15Myxosporidiasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Myxozoa
has Golgi dictyosomes
with cis-spliced introns endoparasitic, multicellular spores, mitochondria,
and no cilia
Reclassified as animals in 1998.
16Haplosporidiasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Myxozoa
has Golgi dictyosomes
with cis-spliced introns endoparasitic, multicellular spores, mitochondria,
and no cilia
Reclassified as animals in 1998.
17Paramyxiasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Myxozoa
has Golgi dictyosomes
with cis-spliced introns endoparasitic, multicellular spores, mitochondria,
and no cilia
Reclassified as animals in 1998.
18Mesozoasubkingdom Dictyozoa
branch Bikonta
infrakingdom Neozoa
parvkingdom Mesozoa
has Golgi dictyosomes
with cis-spliced introns
tubular mitochondrial cristae multicellular with no collagenous connective tissue
Reclassified as animals in 1998.

The phylum Opalozoa was established by Cavalier-Smith in 1991.

Six kingdoms models

By 1998, Cavalier-Smith had reduced the total number of kingdoms from eight to six: Animalia, Protozoa, Fungi, Plantae, Chromista, and Bacteria.
Five of Cavalier-Smith's kingdoms are classified as eukaryotes as shown in the following scheme:
Eukaryotes are divided into two major groups: Unikont and Bikont. Uniciliates are cells with only one flagellum and unikonts are descended from uniciliates. Unikont cells often have only one centriole as well. Biciliate cells have two flagella and bikonts are descended from biciliates. Biciliates undergo ciliary transformation by converting a younger anterior flagellum into a dissimilar older posterior flagellum. Animals and fungi are unikonts while plants and chromists are bikonts. Some protozoa are unikonts while others are bikonts.
The Bacteria are subdivided into Eubacteria and Archaebacteria. According to Cavalier-Smith, Eubacteria is the oldest group of terrestrial organisms still living. He classifies the groups which he believes are younger as Neomura.

The 1998 model

Kingdom Animalia

In 1993, Cavalier-Smith classified Myxozoa as a protozoan parvkingdom. By 1998, he had reclassified it as an animal subkingdom. Myxozoa contains three phyla, Myxosporidia, Haplosporidia, and Paramyxia, which were reclassified as animals along with Myxozoa. Likewise, Cavalier-Smith reclassified the protozoan phylum Mesozoa as an animal subkingdom.
In his 1998 scheme, the animal kingdom was divided into four subkingdoms:
He created five new animal phyla:
and recognized a total of 23 animal phyla, as shown here:
Under Cavalier-Smith's proposed classification system, protozoa share the following traits:
Organisms that do not meet these criteria were reassigned to other kingdoms by Cavalier-Smith.

The 2003 model

Kingdom Protozoa

In 1993, Cavalier-Smith divided the kingdom Protozoa into two subkingdoms and 18 phyla. By 2003 he used phylogenic evidence to revise the total number of proposed phyla down to 11: Amoebozoa, Choanozoa, Cercozoa, Retaria, Loukozoa, Metamonada, Euglenozoa, Percolozoa, Apusozoa, Alveolata, Ciliophora, and Miozoa.

Unikonts and bikonts

do not have flagella and are difficult to classify as unikont or bikont based on morphology. In his 1993 classification scheme, Cavalier-Smith incorrectly classified amoebas as bikonts. Gene fusion research later revealed that the clade Amoebozoa, was ancestrally uniciliate. In his 2003 classification scheme, Cavalier-Smith reassigned Amoebozoa to the unikont clade along with animals, fungi, and the protozoan phylum Choanozoa. Plants and all other protists where assigned to the clade Bikont by Cavalier-Smith.
Cavalier-Smith's 2003 classification scheme:
By September 2003, Cavalier-Smith's tree of life looked like this:
In the above tree, the traditional plant, animal, and fungal kingdoms, as well as Cavalier-Smith's proposed kingdom Chromista, are shown as leaves. The leaves Eubacteria and Archaebacteria together make up the kingdom Bacteria. All remaining leaves together make up the kingdom Protozoa.
By 2006, Cavalier-Smith's microbial tree look like this:
By 2010 new data emerged that showed that Unikonts and Bikonts, originally considered to be separate because of an apparently different organization of cilia and cytoskeleton, are in reality more similar than previously thought. As a consequence, Cavalier-Smith revised the above tree and proposed to move its root to reside in between the Excavata and Euglenozoa kingdoms.

Seven kingdoms model

In 1987, Cavalier-Smith introduced a classification divided into two superkingdoms and seven kingdoms, two prokaryotic kingdoms and five eukaryotic kingdoms.
Cavalier-Smith and his collaborators revised the classification in 2015, and published it in PLOS ONE. In this scheme they reintroduced the classification with the division of prokaryotes superkingdom into two kingdoms, Bacteria and Archaea. This is based on the consensus in the Taxonomic Outline of Bacteria and Archaea and the Catalogue of Life.