Cetirizine


Cetirizine, sold under the brand name Zyrtec among others, is a second-generation antihistamine used to treat allergic rhinitis, dermatitis, and urticaria. It is taken by mouth. Effects generally begin within an hour and last for about a day. The degree of benefit is similar to other antihistamines such as diphenhydramine.
Common side effects include sleepiness, dry mouth, headache, and abdominal pain. The degree of sleepiness that occurs is generally less than with first generation antihistamines. Serious side effects may include aggression and angioedema. Use in pregnancy appears safe, but use during breastfeeding is not recommended. The medication works by blocking histamine H1 receptors, mostly outside the brain.
It was patented in 1981 and came into medical use in 1987. It is available as a generic medication. A month's supply in the United Kingdom costs the NHS about £0.70 as of 2019. In the United States the wholesale cost of this amount is about US$2.50. In 2017, it was the 66th most commonly prescribed medication in the United States, with more than eleven million prescriptions.

Medical uses

Allergies

Cetirizine's primary indication is for hay fever and other allergies. Because the symptoms of itching and redness in these conditions are caused by histamine acting on the H1 receptor, blocking those receptors temporarily relieves those symptoms.
Cetirizine is also commonly prescribed to treat acute and chronic urticaria, more efficiently than any other second-generation antihistamine.

Available forms

Cetirizine is available over-the-counter in the US in the form of 5 and 10 mg tablets. A 20 mg strength is available by prescription only.
In the UK up to 30 tablets of 10 mg are on the general sales list and can be purchased without a prescription and without pharmacist supervision.

Adverse effects

Commonly reported side effects of cetirizine include headache, dry mouth, drowsiness, and fatigue, while more serious but rare side effects include cardiac failure, tachycardia, and edema.
Discontinuing cetirizine after prolonged use may result in generalized itching.

Pharmacology

Pharmacodynamics

Cetirizine acts as a highly selective antagonist of the histamine H1 receptor. The Ki values for the H1 receptor are approximately 6 nM for cetirizine, 3 nM for levocetirizine, and 100 nM for dextrocetirizine, indicating that the levorotatory enantiomer is the main active form. Cetirizine has 600-fold or greater selectivity for the H1 receptor over a wide variety of other sites, including muscarinic acetylcholine, serotonin, dopamine, and α-adrenergic receptors, among many others. The drug shows 20,000-fold or greater selectivity for the H1 receptor over the five muscarinic acetylcholine receptors, and hence does not exhibit anticholinergic effects. It shows negligible inhibition of the hERG channel and no cardiotoxicity has been observed with cetirizine at doses of up to 60 mg/day, six times the normal recommended dose and the highest dose of cetirizine that has been studied in healthy subjects.
Cetirizine crosses the blood–brain barrier only slightly, and for this reason, it produces minimal sedation compared to many other antihistamines. A positron emission tomography study found that brain occupancy of the H1 receptor was 12.6% for 10 mg cetirizine, 25.2% for 20 mg cetirizine, and 67.6% for 30 mg hydroxyzine. PET studies with antihistamines have found that brain H1 receptor occupancy of more than 50% is associated with a high prevalence of somnolence and cognitive decline, whereas brain H1 receptor occupancy of less than 20% is considered to be non-sedative. In accordance, H1 receptor occupancy correlated well with subjective sleepiness for 30 mg hydroxyzine but there was no correlation for 10 or 20 mg cetirizine. As such, brain penetration and brain H1 receptor occupancy by cetirizine are dose-dependent, and in accordance, while cetirizine at doses of 5 to 10 mg have been reported to be non-sedating or mildly sedating, a higher dose of 20 mg has been found to induce significant drowsiness in other studies.
Cetirizine has been shown to inhibit eosinophil chemotaxis and LTB4 release. At a dosage of 20 mg, Boone et al. found that it inhibited the expression of VCAM-1 in patients with atopic dermatitis.

Pharmacokinetics

Absorption

Cetirizine is rapidly and extensively absorbed upon oral administration in tablet or syrup form. The oral bioavailability of cetirizine is at least 70% and of levocetirizine is at least 85%. The Tmax of cetirizine is approximately 1.0 hour regardless of formulation. The pharmacokinetics of cetirizine have been found to increase linearly with dose across a range of 5 to 60 mg. Its Cmax following a single dose has been found to be 257 ng/mL for 10 mg and 580 ng/mL for 20 mg. Food has no effect on the bioavailability of cetirizine but has been found to delay the Tmax by 1.7 hours and to decrease the Cmax by 23%. Similar findings were reported for levocetirizine, which had its Tmax delayed by 1.25 hours and its Cmax decreased by about 36% when administered with a high-fat meal. Steady-state levels of cetirizine occur within 3 days and there is no accumulation of the drug with chronic administration. Following once-daily administration of 10 mg cetirizine for 10 days, the mean Cmax was 311 ng/mL.

Distribution

The mean plasma protein binding of cetirizine has been found to be 93 to 96% across a range of 25 to 1,000 ng/mL independent of concentration. Plasma protein binding of 88 to 96% has also been reported across multiple studies. The drug is bound to albumin with high affinity, while α1-acid glycoprotein and lipoproteins contribute much less to total plasma protein binding. The unbound or free fraction of levocetirizine has been reported to be 8%. The true volume of distribution of cetirizine is unknown but is estimated to be 0.3 to 0.45 L/kg. Cetirizine poorly and slowly crosses the blood–brain barrier, which is due mainly to its chemical properties but also to a minor extent to its activity as a P-glycoprotein substrate.

Metabolism

Cetirizine does not undergo extensive metabolism. It is notably not metabolized by the cytochrome P450 system. Because of this, it does not interact significantly with drugs that inhibit or induce cytochrome P450 enzymes such as theophylline, erythromycin, clarithromycin, cimetidine, or alcohol. While cetirizine does not undergo extensive metabolism or metabolism by the cytochrome P450 enzyme, it does undergo some metabolism by other means, the metabolic pathways of which include oxidation and conjugation. Plasma radioactivity attributed to unchanged cetirizine is more than 90% at 2 hours, 80% at 10 hours, and 70% at 24 hours, indicating limited and slow metabolism. The enzymes responsible for transformation of cetirizine have not been identified.

Elimination

Cetirizine is eliminated approximately 70 to 85% in the urine and 10 to 13% in the feces. About 50 or 60% of cetirizine eliminated in the urine is unchanged. It is eliminated in the urine via an active transport mechanism. The elimination half-life of cetirizine ranges from 6.5 to 10 hours in healthy adults, with a mean across studies of approximately 8.3 hours. Its duration of action is at least 24 hours. The elimination half-life of cetirizine is increased in the elderly, in hepatic impairment, and in renal impairment.

Chemistry

Cetirizine contains L- and D-stereoisomers. Chemically, levocetirizine is the active L-enantiomer of cetirizine. The drug is a member of the diphenylmethylpiperazine group of antihistamines. Analogues include cyclizine and hydroxyzine.

Synthesis

The 1--piperazine is alkylated with methyl -acetate in the presence of sodium carbonate and xylene solvent to produce the Sn2 substitution product in 28% yield. Saponification of the acetate ester is done by refluxing with potassium hydroxide in absolute ethanol to afford a 56% yield of the potassium salt intermediate. This is then hydrolyzed with aqueous HCl and extracted to give an 81% yield of the carboxylic acid product.

Society and culture

Brand names

Cetirizine is marketed under the brand names Alatrol, Alerid, Alzene, Cetirin, Cetzine, Cezin, Cetgel, Cirrus, Histec, Histazine, Humex, Letizen, Okacet, Reactine, Razene, Rigix, Sensahist, Triz, Zetop, Zirtec, Zirtek, Zodac, Zyllergy, Zynor, Zyrlek, and Zyrtec, among others.

Availability

Formerly prescription-only in many countries, cetirizine is now available without prescription in most countries. In some countries it is available over-the-counter only in packages containing seven or ten 10 mg doses.
Like many other antihistamine medications, cetirizine is commonly prescribed in combination with pseudoephedrine, a decongestant. These combinations are often marketed using the same brand name as the cetirizine with a "-D" suffix