Chemotroph


Chemotrophs are organisms that obtain energy by the oxidation of electron donors in their environments. These molecules can be organic or inorganic. The chemotroph designation is in contrast to phototrophs, which use solar energy. Chemotrophs can be either autotrophic or heterotrophic. Chemotrophs are found in ocean floors where sunlight cannot reach them because they are not dependent on solar energy. Ocean floors often contain underwater volcanos that can provide heat as a substitute for sunlight's warmth.

Chemoautotroph

Chemoautotrophs = chemical, auto = self, troph, in addition to deriving energy from chemical reactions, synthesize all necessary organic compounds from carbon dioxide. Chemoautotrophs can use inorganic electron sources such as hydrogen sulfide, elemental sulfur, ferrous iron, molecular hydrogen, and ammonia or organic sources. Most chemoautotrophs are extremophiles, bacteria or archaea that live in hostile environments and are the primary producers in such ecosystems. Chemoautotrophs generally fall into several groups: methanogens, sulfur oxidizers and reducers, nitrifiers, anammox bacteria, and thermoacidophiles. An example of one of these prokaryotes would be Sulfolobus. Chemolithotrophic growth can be dramatically fast, such as Hydrogenovibrio crunogenus with a doubling time around one hour.
The term "chemosynthesis", coined in 1897 by Wilhelm Pfeffer, originally was defined as the energy production by oxidation of inorganic substances in association with autotrophy—what would be named today as chemolithoautotrophy. Later, the term would include also the chemoorganoautotrophy, that is, it can be seen as a synonym of chemoautotrophy.

Chemoheterotroph

Chemoheterotrophs = chemical, hetero = other, troph are unable to fix carbon to form their own organic compounds. Chemoheterotrophs can be chemolithoheterotrophs, utilizing inorganic electron sources such as sulfur, or chemoorganoheterotrophs, utilizing organic electron sources such as carbohydrates, lipids, and proteins. Most animals and fungi are examples of chemoheterotrophs, obtaining most of their energy from O2.Halophiles are chemoheterotrophs.

Iron- and manganese-oxidizing bacteria

In the deep oceans, iron-oxidizing bacteria derive their energy needs by oxidizing ferrous iron to ferric iron. The electron conserved from this reaction reduces the respiratory chain and can be thus used in the synthesis of ATP by forward electron transport or NADH by reverse electron transport, replacing or augmenting traditional phototrophism.
Manganese-oxidizing bacteria also make use of igneous lava rocks in much the same way; by oxidizing manganous manganese into manganic manganese. Manganese is more scarce than iron oceanic crust, but is much easier for bacteria to extract from igneous glass. In addition, each manganese oxidation donates two electrons to the cell versus one for each iron oxidation, though the amount of ATP or NADH that can be synthesised in couple to these reactions varies with pH and specific reaction thermodynamics in terms of how much of a Gibbs free energy change there is during the oxidation reactions versus the energy change required for the formation of ATP or NADH, all of which vary with concentration, pH etc. Much still remains unknown about manganese-oxidizing bacteria because they have not been cultured and documented to any great extent.

Flowchart