Complex reflection group


In mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise.
Complex reflection groups arise in the study of the invariant theory of polynomial rings. In the mid-20th century, they were completely classified in work of Shephard and Todd. Special cases include the symmetric group of permutations, the dihedral groups, and more generally all finite real reflection groups.

Definition

A reflection r of a finite-dimensional complex vector space V is an element of finite order that fixes a complex hyperplane pointwise, that is, the fixed-space has codimension 1.
A complex reflection group is a finite subgroup of that is generated by reflections.

Properties

Any real reflection group becomes a complex reflection group if we extend the scalars from
R to C. In particular all Coxeter groups or Weyl groups give examples of complex reflection groups.
A complex reflection group W is irreducible if the only W-invariant proper subspace of the corresponding vector space is the origin. In this case, the dimension of the vector space is called the rank of W.
The Coxeter number of an irreducible complex reflection group W of rank is defined as where denotes the set of reflections and denotes the set of reflecting hyperplanes.
In the case of real reflection groups, this definition reduces to the usual definition of the Coxeter number for finite Coxeter systems.

Classification

Any complex reflection group is a product of irreducible complex reflection groups, acting on the sum of the corresponding vector spaces. So it is sufficient to classify the irreducible complex reflection groups.
The irreducible complex reflection groups were classified by. They proved that every irreducible belonged to an infinite family G depending on 3 positive integer parameters or was one of 34 exceptional cases, which they numbered from 4 to 37. The group G is the generalized symmetric group; equivalently, it is the wreath product of the symmetric group Sym by a cyclic group of order m. As a matrix group, its elements may be realized as monomial matrices whose nonzero elements are mth roots of unity.
The group G is an index-p subgroup of G. G is of order mnn!/p. As matrices, it may be realized as the subset in which the product of the nonzero entries is an th root of unity. Algebraically, G is a semidirect product of an abelian group of order mn/p by the symmetric group Sym; the elements of the abelian group are of the form, where θ is a primitive mth root of unity and ∑ai ≡ 0 mod p, and Sym acts by permutations of the coordinates.
The group G acts irreducibly on Cn except in the cases m = 1, n > 1 and G. In these cases, Cn splits as a sum of irreducible representations of dimensions 1 and n − 1.

Special cases of ''G''(''m'', ''p'', ''n'')

[Coxeter group]s

When m = 2, the representation described in the previous section consists of matrices with real entries, and hence in these cases G is a finite Coxeter group. In particular:
In addition, when m = p and n = 2, the group G is the dihedral group of order 2p; as a Coxeter group, type I2 = = .

Other special cases and coincidences

The only cases when two groups G are isomorphic as complex reflection groups are that G is isomorphic to G for any positive integers a, b. However, there are other cases when two such groups are isomorphic as abstract groups.
The groups G and G are isomorphic to the symmetric group Sym. The groups G and G are isomorphic to the symmetric group Sym. Both G and G are isomorphic to the dihedral group of order 8. And the groups G are cyclic of order 2, as is G.

List of irreducible complex reflection groups

There are a few duplicates in the first 3 lines of this list; see the previous section for details.
STRankStructure and namesCoxeter namesOrderReflectionsDegreesCodegrees
1n−1Symmetric group G = Symn!2n/22, 3,...,n0,1,...,n − 2
2nG m > 1, n > 1, p|m mnn!/p2mn/2,dnφ m,2m,..,m; mn/p0,m,..., m if p < m; 0,m,...,m, mn if p = m
22G p > 1,p2 or 2p22p,d p; 2p0,p
22Dihedral group G p > 2 or 2p2p2,p0,p-2
31Cyclic group G = Zp+ or pdφ p0
42W, Z2.T33 or, ⟨2,3,3⟩24384,60,2
52Z6.T33 or 723166,120,6
62Z4.T32 or 4826384,120,8
72Z12.T‹3,3,3›2 or ⟨2,3,3⟩61442631612,120,12
82Z4.O44 or 96264128,120,4
92Z8.O42 or or ⟨2,3,4⟩41922184128,240,16
102Z12.O43 or 2882631641212,240,12
112Z24.O⟨2,3,4⟩1257621831641224,240,24
122Z2.O= GL2⟨2,3,4⟩482126,80,10
132Z4.O⟨2,3,4⟩2962188,120,16
142Z6.O32 or 1442123166,240,18
152Z12.O⟨2,3,4⟩628821831612,240,24
162Z10.I, ⟨2,3,5⟩×Z555 or 60054820,300,10
172Z20.I52 or 120023054820,600,40
182Z30.I53 or 180034054830,600,30
192Z60.I⟨2,3,5⟩30360023034054860,600,60
202Z6.I33 or 36034012,300,18
212Z12.I32 or 72023034012,600,48
222Z4.I⟨2,3,5⟩224023012,200,28
233W = Z2 × PSL2, 1202152,6,100,4,8
243W = Z2 × PSL2, Klein4, 3362214,6,140,8,10
253W = W = 31+2.SL2 Hessian333, 6483246,9,120,3,6
263W =Z2 ×31+2.SL2 Hessian233, 129629 3246,12,180,6,12
273W = Z2 ×, Valentiner4,
5,
21602456,12,300,18,24
284W = * SL2)., 1152212+122,6,8,120,4,6,10
294W =.Sym4, 76802404,8,12,200,8,12,16
304W = *SL2).Z2, 144002602,12,20,300,10,18,28
314W = W =.Sp4460802608,12,20,240,12,16,28
324W = Z3 × Sp43333, 15552038012,18,24,300,6,12,18
335W = Z2 ×Ω5 = Z2 × PSp4= Z2 × PSU43, 518402454,6,10,12,180,6,8,12,14
346W= Z3.Ω.Z2, Mitchell's group3, 3919104021266,12,18,24,30,420,12,18,24,30,36
356W = SO5 = O = PSp4.Z2 = PSU4.Z2, 518402362,5,6,8,9,120,3,4,6,7,10
367W = Z2 ×Sp6, 29030402632,6,8,10,12,14,180,4,6,8,10,12,16
378W= Z2.O, 69672960021202,8,12,14,18,20,24,300,6,10,12,16,18,22,28

For more information, including diagrams, presentations, and codegrees of complex reflection groups, see the tables in.

Degrees

Shephard and Todd proved that a finite group acting on a complex vector space is a complex reflection group if and only if its ring of invariants is a polynomial ring. For being the rank of the reflection group, the degrees of the generators of the ring of invariants are called degrees of W and are listed in the column above headed "degrees". They also showed that many other invariants of the group are determined by the degrees as follows:
For being the rank of the reflection group, the codegrees of W can be defined by
By definition, every complex reflection group is generated by its reflections. The set of reflections is not a minimal generating set, however, and every irreducible complex reflection groups of rank has a minimal generating set consisting of either or reflections. In the former case, the group is said to be well-generated.
The property of being well-generated is equivalent to the condition for all. Thus, for example, one can read off from the classification that the group is well-generated if and only if p = 1 or m.
For irreducible well-generated complex reflection groups, the Coxeter number defined above equals the largest degree,. A reducible complex reflection group is said to be well-generated if it is a product of irreducible well-generated complex reflection groups. Every finite real reflection group is well-generated.

Shephard groups

The well-generated complex reflection groups include a subset called the Shephard groups. These groups are the symmetry groups of regular complex polytopes. In particular, they include the symmetry groups of regular real polyhedra. The Shephard groups may be characterized as the complex reflection groups that admit a "Coxeter-like" presentation with a linear diagram. That is, a Shephard group has associated positive integers and such that there is a generating set satisfying the relations
and
This information is sometimes collected in the Coxeter-type symbol, as seen in the table above.
Among groups in the infinite family, the Shephard groups are those in which. There are also 18 exceptional Shephard groups, of which three are real.

Cartan matrices

An extended Cartan matrix defines the Unitary group. Shephard groups of rank n group have n generators.
Ordinary Cartan matrices have diagonal elements 2, while unitary reflections do not have this restriction.
For example, the rank 1 group, p,, is defined by a 1×1 matrix .
Given:.