Cyanide
A cyanide is a chemical compound that contains the group C≡N. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom.
In inorganic cyanides, the cyanide group is present as the anion CN−. Salts such as sodium cyanide and potassium cyanide are highly toxic. Hydrocyanic acid, also known as hydrogen cyanide, or HCN, is a highly volatile liquid that is produced on a large scale industrially. It is obtained by acidification of cyanide salts.
Organic cyanides are usually called nitriles. In nitriles, the CN group is linked by a covalent bond to carbon. For example, in acetonitrile, the cyanide group is bonded to methyl. Because they do not release cyanide ions, nitriles are generally far less toxic than cyanide salts. Some nitriles, which occur naturally as cyanohydrins, release hydrogen cyanide.
Nomenclature and etymology
In IUPAC nomenclature, organic compounds that have a –C≡N functional group are called nitriles. Thus, nitriles are organic compounds.An example of a nitrile is CH3CN, acetonitrile, also known as methyl cyanide. Nitriles usually do not release cyanide ions. A functional group with a hydroxyl and cyanide bonded to the same carbon is called cyanohydrin. Unlike nitriles, cyanohydridins do release hydrogen cyanide. In inorganic chemistry, salts containing the C≡N− ion are referred to as cyanides. Although the cyanide ion contains a carbon atom, it is not usually considered organic.
The word is derived from the Greek kyanos, meaning dark blue, as a result of its being first obtained by the heating of the pigment known as Prussian blue.
Bonding
The cyanide ion is isoelectronic with carbon monoxide and with molecular nitrogen.Occurrence and reactions
In nature
Cyanides are produced by certain bacteria, fungi, and algae and are found in a number of plants. Cyanides are found in substantial amounts in certain seeds and fruit stones, e.g., those of bitter almonds, apricots, apples, and peaches. Chemical compounds that can release cyanide are known as cyanogenic compounds. In plants, cyanides are usually bound to sugar molecules in the form of cyanogenic glycosides and defend the plant against herbivores. Cassava roots, an important potato-like food grown in tropical countries, also contain cyanogenic glycosides.The Madagascar bamboo Cathariostachys madagascariensis produces cyanide as a deterrent to grazing. In response, the golden bamboo lemur, which eats the bamboo, has developed a high tolerance to cyanide.
Interstellar medium
The cyanide radical ·CN has been identified in interstellar space. The cyanide radical is used to measure the temperature of interstellar gas clouds.Pyrolysis and combustion product
Hydrogen cyanide is produced by the combustion or pyrolysis of certain materials under oxygen-deficient conditions. For example, it can be detected in the exhaust of internal combustion engines and tobacco smoke. Certain plastics, especially those derived from acrylonitrile, release hydrogen cyanide when heated or burnt.Coordination chemistry
The cyanide anion is a ligand for many transition metals. The high affinities of metals for this anion can be attributed to its negative charge, compactness, and ability to engage in π-bonding. Well-known complexes include:- hexacyanides 3−, which are octahedral in shape.
- tetracyanides 2−, which are square planar in their geometry;
- dicyanides −, which are linear in geometry.
Prussian blue was first accidentally made around 1706, by heating substances containing iron and carbon and nitrogen, and other cyanides made subsequently. Among its many uses, Prussian blue gives the blue color to blueprints, bluing, and cyanotypes.
The enzymes called hydrogenases contain cyanide ligands attached to iron in their active sites. The biosynthesis of cyanide in the -hydrogenases proceeds from carbamoyl phosphate, which converts to cysteinyl thiocyanate, the CN− donor.
Organic derivatives
Because of the cyanide anion's high nucleophilicity, cyano groups are readily introduced into organic molecules by displacement of a halide group. In general, organic cyanides are called nitriles. Thus, CH3CN can be called methyl cyanide but more commonly is referred to as acetonitrile. In organic synthesis, cyanide is a C-1 synthon; i.e., it can be used to lengthen a carbon chain by one, while retaining the ability to be.- RCN + 2 H2O → RCOOH + NH3, or
- 2 RCN + LiAlH4 + 4 H2O → 2 RCH2NH2 + LiAl4
Manufacture
Sodium cyanide is produced by treating hydrogen cyanide with sodium hydroxide
Toxicity
Many cyanides are highly toxic. The cyanide anion is an inhibitor of the enzyme cytochrome c oxidase in the fourth complex of the electron transport chain. It attaches to the iron within this protein. The binding of cyanide to this enzyme prevents transport of electrons from cytochrome c to oxygen. As a result, the electron transport chain is disrupted, meaning that the cell can no longer aerobically produce ATP for energy. Tissues that depend highly on aerobic respiration, such as the central nervous system and the heart, are particularly affected. This is an example of histotoxic hypoxia.The most hazardous compound is hydrogen cyanide, which is a gas and kills by inhalation. For this reason, an air respirator supplied by an external oxygen source must be worn when working with hydrogen cyanide. Hydrogen cyanide is produced by adding acid to a solution containing a cyanide salt. Alkaline solutions of cyanide are safer to use because they do not evolve hydrogen cyanide gas. Hydrogen cyanide may be produced in the combustion of polyurethanes; for this reason, polyurethanes are not recommended for use in domestic and aircraft furniture. Oral ingestion of a small quantity of solid cyanide or a cyanide solution as little as 200 mg, or exposure to airborne cyanide of 270 ppm, is sufficient to cause death within minutes.
Organic nitriles do not readily release cyanide ions, and so have low toxicities. By contrast, compounds such as trimethylsilyl cyanide 3SiCN readily release HCN or the cyanide ion upon contact with water.
Antidote
reacts with cyanide to form cyanocobalamin, which can be safely eliminated by the kidneys. This method has the advantage of avoiding the formation of methemoglobin. This antidote kit is sold under the brand name Cyanokit and was approved by the U.S. FDA in 2006.An older cyanide antidote kit included administration of three substances: amyl nitrite pearls, sodium nitrite, and sodium thiosulfate. The goal of the antidote was to generate a large pool of ferric iron to compete for cyanide with cytochrome a3. The nitrites oxidize hemoglobin to methemoglobin, which competes with cytochrome oxidase for the cyanide ion. Cyanmethemoglobin is formed and the cytochrome oxidase enzyme is restored. The major mechanism to remove the cyanide from the body is by enzymatic conversion to thiocyanate by the mitochondrial enzyme rhodanese. Thiocyanate is a relatively non-toxic molecule and is excreted by the kidneys. To accelerate this detoxification, sodium thiosulfate is administered to provide a sulfur donor for rhodanese, needed in order to produce thiocyanate.
Sensitivity
Minimum risk levels may not protect for delayed health effects or health effects acquired following repeated sublethal exposure, such as hypersensitivity, asthma, or bronchitis. MRLs may be revised after sufficient data accumulates.Applications
Mining
Cyanide is mainly produced for the mining of gold and silver: It helps dissolve these metals and their ores. In the cyanide process, finely ground high-grade ore is mixed with the cyanide ; low-grade ores are stacked into heaps and sprayed with a cyanide solution. The precious metals are complexed by the cyanide anions to form soluble derivatives, e.g., − and −.Silver is less "noble" than gold and often occurs as the sulfide, in which case redox is not invoked. Instead, a displacement reaction occurs:
The "pregnant liquor" containing these ions is separated from the solids, which are discarded to a tailing pond or spent heap, the recoverable gold having been removed. The metal is recovered from the "pregnant solution" by reduction with zinc dust or by adsorption onto activated carbon. This process can result in environmental and health problems. A number of environmental disasters have followed the overflow of tailing ponds at gold mines. Cyanide contamination of waterways has resulting in numerous cases of human and aquatic species mortality.
Aqueous cyanide is hydrolyzed rapidly, especially in sunlight. It can mobilize some heavy metals such as mercury if present. Gold can also be associated with arsenopyrite, which is similar to iron pyrite, wherein half of the sulfur atoms are replaced by arsenic. Gold-containing arsenopyrite ores are similarly reactive toward inorganic cyanide.
Cyanide is also used in electroplating, where it stabilizes metal ions in the electrolyte solution prior to their deposition.
Industrial organic chemistry
Some nitriles are produced on a large scale, e.g., adiponitrile is a precursor to nylon. Such compounds are often generated by combining hydrogen cyanide and alkenes, i.e., hydrocyanation:RCH=CH2 + HCN → RCHCH3. Metal catalysts are required for such reactions.
Medical uses
The cyanide compound sodium nitroprusside is used mainly in clinical chemistry to measure urine ketone bodies mainly as a follow-up to diabetic patients. On occasion, it is used in emergency medical situations to produce a rapid decrease in blood pressure in humans; it is also used as a vasodilator in vascular research. The cobalt in artificial vitamin B12 contains a cyanide ligand as an artifact of the purification process; this must be removed by the body before the vitamin molecule can be activated for biochemical use. During World War I, a copper cyanide compound was briefly used by Japanese physicians for the treatment of tuberculosis and leprosy.Illegal fishing and poaching
Cyanides are illegally used to capture live fish near coral reefs for the aquarium and seafood markets. The practice is controversial, dangerous, and damaging but is driven by the lucrative exotic fish market.Poachers in Africa have been known to use cyanide to poison waterholes, to kill elephants for their ivory.
Pest control
are used in the United States to kill coyotes and other canids. Cyanide is also used for pest control in New Zealand, particularly for possums, an introduced marsupial that threatens the conservation of native species and spreads tuberculosis amongst cattle. Possums can become bait shy but the use of pellets containing the cyanide reduces bait shyness. Cyanide has been known to kill native birds, including the endangered kiwi. Cyanide is also effective for controlling the dama wallaby, another introduced marsupial pest in New Zealand. A licence is required to store, handle and use cyanide in New Zealand.Niche uses
is used to achieve a blue color on cast bronze sculptures during the final finishing stage of the sculpture. On its own, it will produce a very dark shade of blue and is often mixed with other chemicals to achieve the desired tint and hue. It is applied using a torch and paint brush while wearing the standard safety equipment used for any patina application: rubber gloves, safety glasses, and a respirator. The actual amount of cyanide in the mixture varies according to the recipes used by each foundry.Cyanide is also used in jewelry-making and certain kinds of photography such as sepia toning.
Cyanides are used as insecticides for fumigating ships. Cyanide salts are used for killing ants, and have in some places been used as rat poison.
Although usually thought to be toxic, cyanide and cyanohydrins have been demonstrated to increase germination in various plant species.
Human poisoning
Deliberate cyanide poisoning of humans has occurred many times throughout history.For notable cyanide deaths, see Cyanide poisoning: History.
Most significantly, hydrogen cyanide released from pellets of Zyklon-B was used extensively in the systematic mass murders of the Holocaust, especially in extermination camps. Poisoning by hydrogen cyanide gas within a gas chamber is one method of executing a condemned prisoner as the condemned prisoner eventually breathes the lethal fumes.