Deep sea mining


Deep sea mining is a mineral retrieval process that takes place on the ocean floor. Ocean mining sites are usually around large areas of polymetallic nodules or active and extinct hydrothermal vents at below the ocean’s surface. The vents create globular or massive sulfide deposits, which contain valuable metals such as silver, gold, copper, manganese, cobalt, and zinc. The deposits are mined using either hydraulic pumps or bucket systems that take ore to the surface to be processed.
As with all mining operations, deep sea mining raises questions about its potential environmental impact. Environmental advocacy groups such as Greenpeace and the Deep sea Mining Campaign have argued that seabed mining should not be permitted in most of the world's oceans because of the potential for damage to deepsea ecosystems and pollution by heavy metal laden plumes.

Brief history

In the 1960s the prospect of deep-sea mining was brought up by the publication of J. L. Mero's Mineral Resources of the Sea. The book claimed that nearly limitless supplies of cobalt, nickel and other
metals could be found throughout the planet's oceans. Mero stated that these metals occurred in deposits of manganese nodules, which appear as lumps of compressed flowers on the seafloor at
depths of about 5,000 m. Some nations including France, Germany and the United States sent out research vessels in search of nodule deposits. Initial estimates of deep sea mining viability turned out to be much exaggerated. This overestimate, coupled with depressed metal prices, led to the near abandonment of nodule mining by 1982. From the 1960s to 1984 an estimated US $650 million had
been spent on the venture, with little to no return.
Over the past decade a new phase of deep-sea mining has begun. Rising demand for precious metals in Japan, China, Korea and India has pushed these countries in search of new sources. Interest has recently shifted toward hydrothermal vents as the source of metals instead of scattered nodules. The trend of transition towards an electricity-based information and transportation infrastructure currently seen in western societies further pushes demands for precious metals. The current revived interest in phosphorus nodule mining at the seafloor stems from phosphor-based artificial fertilizers being of significant importance for world food production. Growing world population pushes the need for artificial fertilizers or greater incorporation of organic systems within agricultural infrastructure.
Currently, the best potential deep sea site, the Solwara 1 Project, has been found in the waters off Papua New Guinea, a high grade copper-gold resource and the world's first Seafloor Massive Sulphide resource. The Solwara 1 Project is located at 1600 metres water depth in the Bismarck Sea, New Ireland Province. Using ROV technology developed by UK-based Soil Machine Dynamics, Nautilus Minerals Inc. is first company of its kind to announce plans to begin full-scale undersea excavation of mineral deposits. However a dispute with the government of Papua-New Guinea delayed production and its now scheduled to commence commercial operations in early 2018.
The world's first "large-scale" mining of hydrothermal vent mineral deposits was carried out by Japan in August - September, 2017. Japan Oil, Gas and Metals National Corporation carried out this operation using the Research Vessel Hakurei. This mining was carried out at the 'Izena hole/cauldron' vent field within the hydrothermally active back-arc basin known as the Okinawa Trough which contains 15 confirmed vent fields according to the .

Laws and regulations

The international law–based regulations on deep sea mining are contained in the United Nations Conventions on the Law of the Sea from 1973 to 1982, which came into force in 1994. The convention set up the International Seabed Authority, which regulates nations’ deep sea mining ventures outside each nations’ Exclusive Economic Zone. The ISA requires nations interested in mining to explore two equal mining sites and turn one over to the ISA, along with a transfer of mining technology over a 10- to 20-year period. This seemed reasonable at the time because it was widely believed that nodule mining would be extremely profitable. However, these strict requirements led some industrialized countries to refuse to sign the initial treaty in 1982.
The US abides by the Deep Seabed Hard Mineral Resources Act, which was originally written in 1980. This legislations is largely recognized as one of the main concerns the US has with ratifying UNCLOS.
Within the EEZ of nation states seabed mining comes under the jurisdiction of national laws. Despite extensive exploration both within and outside of EEZs, only a few countries, notably New Zealand, have established legal and institutional frameworks for the future development of deep seabed mining.
Papua New Guinea was the first country to approve a permit for the exploration of minerals in the deep seabed. Solwara 1 was awarded its licence and environmental permits despite three independent reviews of the environmental impact statement mine finding significant gaps and flaws in the underlying science.
The ISA has recently arranged a workshop in Australia where scientific experts, industry representatives, legal specialists and academics worked towards improving existing regulations and ensuring that development of seabed minerals does not cause serious and permanent damage to the marine environment.

Resources mined

The deep sea contains many different resources available for extraction, including silver, gold, copper, manganese, cobalt, and zinc. These raw materials are found in various forms on the sea floor.
Minerals and related depths
Type of mineral depositAverage DepthResources found
Polymetallic nodules4,000 – 6,000 mNickel, copper, cobalt, and manganese
Manganese crusts800 – 2,400 mMainly cobalt, some vanadium, molybdenum and platinum
Sulfide deposits1,400 – 3,700 mCopper, lead and zinc some gold and silver

Diamonds are also mined from the seabed by De Beers and others. Nautilus Minerals Inc and Neptune Minerals are planning to mine the offshore waters of Papua New Guinea and New Zealand.

Extraction methods

have given rise to the use remotely operated vehicles to collect mineral samples from prospective mine sites. Using drills and other cutting tools, the ROVs obtain samples to be analyzed for precious materials. Once a site has been located, a mining ship or station is set up to mine the area.
There are two predominant forms of mineral extraction being considered for full-scale operations: continuous-line bucket system and the hydraulic suction system. The CLB system is the preferred method of nodule collection. It operates much like a conveyor-belt, running from the sea floor to the surface of the ocean where a ship or mining platform extracts the desired minerals, and returns the tailings to the ocean. Hydraulic suction mining lowers a pipe to the seafloor which transfers nodules up to the mining ship. Another pipe from the ship to the seafloor returns the tailings to the area of the mining site.
In recent years, the most promising mining areas have been the Central and Eastern Manus Basin around Papua New Guinea and the crater of Conical Seamount to the east. These locations have shown promising amounts of gold in the area's sulfide deposits. The relatively shallow water depth of 1050 m, along with the close proximity of a gold processing plant makes for an excellent mining site.
Deep sea mining project value chain can be differentiated using the criteria of the type of activities where the value is actually added. During prospecting, exploration and resource assessment phases the value is added to intangible assets, for the extraction, processing and distribution phases the value increases with relation to product processing. There is an intermediate phase – the pilot mining test which could be considered to be an inevitable step in the shift from “resources” to “reserves” classification, where the actual value starts.
Exploration phase involves such operations as locating, sea bottom scanning and sampling using technologies such as echo-sounders, side scan sonars, deep-towed photography, ROVs, AUVs. The resource valuation incorporates the examination of data in the context of potential mining feasibility.
Value chain based on product processing involves such operations as actual mining, vertical transport, storing, offloading, transport, metallurgical processing for final products. Unlike the exploration phase, the value increases after each operation on processed material eventually delivered to the metal market. Logistics involves technologies analogous to those applied in land mines. This is also the case for the metallurgical processing, although rich and polymetallic mineral composition which distinguishes marine minerals from its land analogs requires special treatment of the deposit. Even though the individual metallurgical processes proposed to treat manganese nodules are already well-known, the feedstock and connection of process steps differs from processes for terrestrial ores. For copper containing seafloor massive sulfides the same process used for terrestrial can be used. Environmental monitoring and impact assessment analysis relate to the temporal and spatial discharges of the mining system if they occur, sediment plumes, disturbance to the benthic environment and the analysis of the regions affected by seafloor machines. The step involves an examination of disturbances near the seafloor, as well as disturbances near the surface. Observations include baseline comparisons for the sake of quantitative impact assessments for ensuring the sustainability of the mining process.

Environmental impacts

Research shows that polymetallic nodule fields are hotspots of abundance and diversity for a highly vulnerable abyssal fauna. Because deep sea mining is a relatively new field, the complete consequences of full-scale mining operations on this ecosystem are unknown. However, some researchers have said they believe that removal of parts of the sea floor will result in disturbances to the benthic layer, increased toxicity of the water column and sediment plumes from tailings. Removing parts of the sea floor could disturb the habitat of benthic organisms, with unknown long-term effects. Aside from the direct impact of mining the area, some researchers and environmental activists have raised concerns about leakage, spills and corrosion that could alter the mining area’s chemical makeup.
Among the impacts of deep sea mining, sediment plumes could have the greatest impact. Plumes are caused when the tailings from mining are dumped back into the ocean, creating a cloud of particles floating in the water. Two types of plumes occur: near bottom plumes and surface plumes. Near bottom plumes occur when the tailings are pumped back down to the mining site. The floating particles increase the turbidity, or cloudiness, of the water, clogging filter-feeding apparatuses used by benthic organisms. Surface plumes cause a more serious problem. Depending on the size of the particles and water currents the plumes could spread over vast areas. The plumes could impact zooplankton and light penetration, in turn affecting the food web of the area.
A rare species called 'Scaly-foot snail', also known as sea pangolin, has become first species to be threatened because of deep sea mining.

Controversy

An article in the Harvard Environmental Law Review in April 2018 argued that "the 'new global gold rush' of deep sea mining shares many features with past resource scrambles – including a general disregard for environmental and social impacts, and the marginalisation of indigenous peoples and their rights". The Foreshore and Seabed Act ignited fierce indigenous opposition in New Zealand, as its claiming of the seabed for the Crown in order to open it up to mining conflicted with Māori claims to their customary lands, who protested the Act as a "sea grab." Later, this act was repealed after an investigation from the UN Commission on Human Rights upheld charges of discrimination. The Act was subsequently repealed and replaced with the Marine and Coastal Area Bill. However, conflicts between indigenous sovereignty and seabed mining continue. Organizations like the and Alliance of Solwara Warriors, comprising 20 communities in the Bismarck and Solomon Sea, are examples of organizations that are seeking to ban seabed mining in Papua New Guinea, where the Solwara 1 project is set to occur, and in the Pacific. They argue primarily that decision-making about deep sea mining has not adequately addressed Free Prior and Informed Consent from affected communities and have not adhered to the precautionary principle, a rule proposed by the 1982 UN World Charter for Nature which informs the ISA regulatory framework for mineral exploitation of the deep sea.