Deep vein thrombosis


Deep vein thrombosis is the formation of a blood clot in a deep vein, most commonly in the legs or pelvis. Symptoms can include pain, swelling, redness, and enlarged veins in the affected area, but some DVTs have no symptoms. The most life-threatening concern with DVT is the potential for a clot to detach, travel through the right side of the heart, and become stuck in arteries that supply blood to the lungs. This is called pulmonary embolism. Both DVT and PE are considered as part of the same overall disease process, which is called venous thromboembolism. VTE can occur as an isolated DVT or as PE with or without DVT. The most frequent long-term complication is post-thrombotic syndrome, which can cause pain, swelling, a sensation of heaviness, itching, and in severe cases, ulcers. Also, recurrent VTE occurs in about 30% of those in the ten years following an initial VTE.
The mechanism of clot formation typically involves some combination of decreased blood flow rate, increased tendency to clot, and injury to the blood vessel wall. Risk factors include recent surgery, older age, active cancer, obesity, personal history and family history of VTE, trauma, injuries, lack of movement, hormonal birth control, pregnancy and the period following birth, and antiphospholipid syndrome. VTE has a strong genetic component, accounting for approximately 50 to 60% of the variability in VTE rates. Genetic factors include non-O blood type, deficiencies of antithrombin, protein C, and protein S and the mutations of factor V Leiden and prothrombin G20210A. In total, dozens of genetic risk factors have been identified.
People suspected of having a DVT can be assessed using a prediction rule such as the [|Wells score]. A D-dimer test can also be used to assist with excluding the diagnosis or to signal a need for further testing. Diagnosis is most commonly confirmed by ultrasound of the suspected veins. An estimated 4–10% of DVTs affect the arms. About 5–11% of people will develop VTE in their lifetime, with VTE becoming much more common with age. When compared to those aged 40 and below, people aged 65 and above are at an approximate 15 times higher risk. However, available data has been historically dominated by European and North American populations, and Asian and Hispanic individuals have a lower VTE risk than whites or blacks.
Using blood thinners is the standard treatment, and typical medications include rivaroxaban, apixaban, and warfarin. Beginning warfarin treatment requires an additional a non-oral anticoagulant, often injections of heparin. Prevention of VTE for the general population includes avoiding obesity and maintaining an active lifestyle. Preventive efforts following low-risk surgery include early and frequent walking. Riskier surgeries generally prevent VTE with a blood thinner or aspirin combined with intermittent pneumatic compression.

Signs and symptoms

Signs and symptoms of DVT, while highly variable, include pain or tenderness, swelling, warmth, dilation of surface veins, redness or discoloration, and cyanosis with fever. However, some with DVT have no symptoms. Signs and symptoms alone are not sufficiently sensitive or specific to make a diagnosis, but when considered in conjunction with [|pre-test probability], can help determine the likelihood of DVT. In most suspected cases, DVT is ruled out after evaluation, and symptoms are more often due to other causes, such as ruptured Baker's cyst, cellulitis, hematoma, lymphedema, and chronic venous insufficiency. Other differential diagnoses include tumors, venous or arterial aneurysms, and connective tissue disorders.

Causes

The three factors of Virchow's triad—venous stasis, hypercoagulability, and changes in the endothelial blood vessel lining—contribute to VTE and are used to explain its formation. Venous stasis is the most consequential of these three factors. Other related causes include activation of immune system components, the state of microparticles in the blood, the concentration of oxygen, and possible platelet activation. Various risk factors contribute to VTE, including genetic and environmental factors, though many with multiple risk factors never develop it.
Acquired risk factors include the strong risk factor of older age, which alters blood composition to favor clotting. Previous VTE, particularly unprovoked VTE, is a strong risk factor. Major surgery and trauma increase risk because of tissue factor from outside the vascular system entering the blood. Minor injuries, lower limb amputation, hip fracture, and long bone fractures are also risks. In orthopedic surgery, venous stasis can be temporarily provoked by a cessation of blood flow as part of the procedure. Inactivity and immobilization contribute to venous stasis, as with orthopedic casts, paralysis, sitting, long-haul travel, bed rest, hospitalization, and in survivors of acute stroke. Conditions that involve compromised blood flow in the veins are May–Thurner syndrome, where a vein of the pelvis is compressed, and venous thoracic outlet syndrome, which includes Paget–Schroetter syndrome, where compression occurs near the base of the neck.
Cancer can grow in and around veins, causing venous stasis, and can also stimulate increased levels of tissue factor. Cancers of the bone, ovary, brain, pancreas, and lymphomas are especially associated with increased VTE risk. Chemotherapy treatment also increases risk. Obesity increases the potential of blood to clot, as does pregnancy. In the postpartum, placental tearing releases substances that favor clotting. Oral contraceptives and hormonal replacement therapy increase the risk through a variety of mechanisms, including altered blood coagulation protein levels and reduced fibrinolysis.
system, often described as a "cascade", consists of a group of proteins that interact to form a blood clot. DVT risk is increased by abnormalities in the cascade. The regulators, antithrombin and activated protein C are shown in green above the blood's clotting factors they affect.
Genetic factors account for approximately 50 to 60% of the variability in VTE rates. Family history of VTE is a risk factor for a first VTE. Genetic factors that increase the risk of VTE include deficiencies of three proteins that normally prevent blood from clotting—protein C, protein S, and antithrombin. Deficiencies in antithrombin, protein C, and protein S are rare but strong, or moderately strong, risk factors. These three deficiencies increase the risk of VTE by about 10 times. Factor V Leiden, which makes factor V resistant to inactivation by activated protein C, mildly increases VTE risk by about three times. Having a non-O blood type roughly doubles VTE risk. Non-O blood type is common globally, making it an important risk factor. Individuals without O blood type have higher blood levels of von Willebrand factor and factor VIII than those with O blood type, increasing the likelihood of clotting. Those homozygous for the common fibrinogen gamma gene variant rs2066865 have about a 1.6 times higher risk of VTE. The genetic variant prothrombin G20210A, which increases prothrombin levels, increases risk by about 2.5 times. Additionally, approximately 5% of people have been identified with a background genetic risk comparable to the factor V Leiden and prothrombin G20210A mutations.
Infection, including that of COVID-19, increases risk. Inflammatory diseases such as Behçet's syndrome, and some autoimmune diseases, such as primary antiphospholipid syndrome and systemic lupus erythematosus, increase risk. SLE itself is frequently associated with secondary antiphospholipid syndrome. Other associated conditions include heparin-induced thrombocytopenia, thrombotic storm, catastrophic antiphospholipid syndrome, paroxysmal nocturnal hemoglobinuria, nephrotic syndrome, HIV, polycythemia vera, intravenous drug use, and smoking. Blood alterations including dysfibrinogenemia, low free protein S, activated protein C resistance, hyperhomocysteinemia, high fibrinogen levels, high factor IX levels, and high factor XI levels are associated with increased risk.
Some risk factors influence the location of DVT within the body. In isolated distal DVT, the profile of risk factors appears distinct from proximal DVT. Transient factors, such as surgery and immobilization, appear to dominate, whereas thrombophilias and age do not seem to increase risk. Common risk factors for having an upper extremity DVT include having an existing foreign body, cancer, and recent surgery.

Classification

The disease term venous thromboembolism includes the development of either DVT or pulmonary embolism or both simultaneously. Provoked DVTs occur in association with acquired risk factors, such as surgery, oral contraceptives, trauma, immobility, obesity, or cancer; cases without acquired states are called unprovoked or idiopathic. Acute DVT is characterized by pain and swelling and is usually occlusive, which means that it obstructs blood flow, whereas non-occlusive DVT is less symptomatic. The label "chronic" has been applied to symptomatic DVT that persists longer than 10 to 14 days. DVT that has no symptoms, but is found only by screening, is labeled asymptomatic or incidental. An initial episode of DVT is called incident and any subsequent DVT is termed recurrent. Bilateral DVT refers to clots in both legs while unilateral means that only a single leg is affected.
DVT in the legs is proximal when above the knee and distal when below the knee. DVT below the popliteal vein, a proximal vein behind the knee, is classified as distal and has limited clinical significance compared to proximal DVT. Iliofemoral DVT has been described as involving either the iliac or common femoral vein; elsewhere, it has been defined as involving at a minimum the common iliac vein, which is near the top of the pelvis. Upper extremity DVT occurs in the arms or the base of the neck. A rare and massive DVT that causes significant obstruction is phlegmasia cerulea dolens, so named because of observed cases with a blue or purplish discoloration. It is a particularly severe form of acute, proximal, and occlusive DVT. It is life-threatening, limb-threatening, and carries a risk of venous gangrene. It can occur in the arm but more commonly affects the leg.

Pathophysiology

DVT often develops in the calf veins and "grows" in the direction of venous flow, towards the heart. When DVT does not grow, it can be cleared naturally and dissolved into the blood. Veins in the leg or pelvis are most commonly affected, including the popliteal vein, femoral vein, and iliac veins of the pelvis. Extensive lower-extremity DVT can even reach into the inferior vena cava. Upper extremity DVT most commonly affects the subclavian, axillary, and jugular veins.
s. The cephalic and basilic veins, however, are superficial veins.
The causes of arterial thrombosis, such as with heart attacks, are more clearly understood than those of venous thrombosis. With arterial thrombosis, blood vessel wall damage is required, as it initiates coagulation, but clotting in the veins mostly occurs without any such damage. The beginning of venous thrombosis is thought to be caused by tissue factor, which leads to conversion of prothrombin to thrombin, followed by fibrin deposition. Red blood cells and fibrin are the main components of venous thrombi, and the fibrin appears to attach to the blood vessel wall lining, a surface that normally acts to prevent clotting. Platelets and white blood cells are also components. Platelets are not as prominent in venous clots as they are in arterial ones, but they can play a role. Inflammation is associated with VTE, and white blood cells play a role in the formation and resolution of venous clots.
Often, DVT begins in the valves of veins. The blood flow pattern in the valves can cause low oxygen concentrations in the blood of a valve sinus. Hypoxemia, which is worsened by venous stasis, activates pathways—ones that include hypoxia-inducible factor-1 and early-growth-response protein 1. Hypoxemia also results in the production of reactive oxygen species, which can activate these pathways, as well as nuclear factor-κB, which regulates hypoxia-inducible factor-1 transcription. Hypoxia-inducible factor-1 and early-growth-response protein 1 contribute to monocyte association with endothelial proteins, such as P-selectin, prompting monocytes to release tissue factor-filled microvesicles, which presumably begin clotting after binding to the endothelial surface.
D-dimers are a fibrin degradation product, a natural byproduct of fibrinolysis that is typically found in the blood. An elevated level can result from plasmin dissolving a clot—or other conditions. Hospitalized patients often have elevated levels for multiple reasons. Anticoagulation, the standard treatment for DVT, prevents further clot growth and PE, but does not act directly on existing clots.

Diagnosis

A clinical probability assessment using the Wells score to determine if a potential DVT is "likely" or "unlikely" is typically the first step of the diagnostic process. The score is used in suspected first lower extremity DVT in primary care and outpatient settings, including the emergency department. The numerical result is most commonly grouped into either "unlikely" or "likely" categories. A Wells score of two or more means a DVT is considered "likely", while those with a lower score are considered "unlikely" to have DVT. In those unlikely to have DVT, a diagnosis is excluded by a negative D-dimer blood test. In people with likely DVT, ultrasound is the standard imaging used to confirm or exclude a diagnosis. Imaging is also needed for hospital inpatients with suspected DVT and those initially categorized as unlikely to have DVT but who have a positive D-dimer test.
While the Wells score is the predominant and most studied clinical prediction rule for DVT, it does have drawbacks. The Wells score requires a subjective assessment regarding the likelihood of an alternate diagnosis and performs less well in the elderly and those with a prior DVT. The Dutch Primary Care Rule has also been validated for use. It contains only objective criteria but requires obtaining a D-dimer value. With this prediction rule, three points or less means a person is at low risk for DVT. A result of four or more points indicates an ultrasound is needed. Instead of using a prediction rule, experienced physicians can make a pre-test DVT probability assessment using clinical assessment and gestalt, but prediction rules are more reliable.
CriteriaWells score for DVTDutch Primary Care Rule
Active cancer +1 point+1 point
Calf swelling ≥ 3 cm compared to asymptomatic calf +1 point+2 points
Swollen unilateral superficial veins +1 point+1 point
Unilateral pitting edema +1 point
Previous documented DVT+1 point
Swelling of entire leg+1 point
Localized tenderness along the deep venous system+1 point
Paralysis, paresis, or recent cast immobilization of lower extremities+1 point
Recently bedridden ≥ 3 days, or major surgery requiring regional or general anesthetic in the past 12 weeks+1 point+1 point
Alternative diagnosis at least as likely−2 points
Positive D-dimer +6 points
Absence of leg trauma+1 point
Male sex+1 point
Use of oral contraceptives+1 point

Compression ultrasonography for suspected deep vein thrombosis is the standard diagnostic method, and it is highly sensitive for detecting an initial DVT. A compression ultrasound is considered positive when the vein walls of normally compressible veins do not collapse under gentle pressure. Clot visualization is sometimes possible, but is not required. Three compression ultrasound scanning techniques can be used, with two of the three methods requiring a second ultrasound some days later to rule out the diagnosis. Whole-leg ultrasound is the option that does not require a repeat ultrasound, but proximal compression ultrasound is frequently used because distal DVT is only rarely clinically significant. Ultrasound methods including duplex and color flow Doppler can be used to further characterize the clot and Doppler ultrasound is especially helpful in the non-compressible iliac veins.
CT scan venography, MRI venography, or a non-contrast MRI are also diagnostic possibilities. The gold standard for judging imaging methods is contrast venography, which involves injecting a peripheral vein of the affected limb with a contrast agent and taking X-rays, to reveal whether the venous supply has been obstructed. Because of its cost, invasiveness, availability, and other limitations, this test is rarely performed.

Management

Treatment for DVT is warranted when the clots are either proximal, distal and symptomatic, or upper extremity and symptomatic. Providing anticoagulation, or blood-thinning medicine, is the typical treatment after patients are checked to make sure they are not subject to bleeding. However, treatment varies depending upon the location of a DVT. For example, in cases of isolated distal DVT, ultrasound surveillance, might be used instead of anticoagulation. Although, those with isolated distal DVT at a high-risk of VTE recurrence are typically anticoagulated as if they had proximal DVT. Those at a low-risk for recurrence might receive a four to six week course of anticoagulation, lower doses, or no anticoagulation at all. In contrast, those with proximal DVT should receive at least 3 months of anticoagulation.
Some anticoagulants can be taken by mouth, and these oral medicines include warfarin, rivaroxaban, apixaban, dabigatran, and edoxaban. Other anticoagulants cannot be taken by mouth. These parenteral medicines include low-molecular-weight heparin, fondaparinux, and unfractionated heparin. Some oral medicines are sufficient when taken alone, while others require the use of an additional parenteral blood thinner. Rivaroxaban and apixaban are the typical first-line medicines, and they are sufficient when taken orally. Rivaroxaban is taken once daily, and apixaban is taken twice daily. Warfarin, dabigatran, and edoxaban require the use of a parenteral anticoagulant to initiate oral anticoagulant therapy. When warfarin is initiated for VTE treatment, a 5-day minimum of a parenteral anticoagulant together with warfarin is given, which is followed by warfarin only therapy. Warfarin is taken to maintain an international normalized ratio of 2.0–3.0, with 2.5 as the target. The benefit of taking warfarin declines as the duration of treatment extends, and the risk of bleeding increases with age. Periodic INR monitoring is not necessary when first-line direct oral anticoagulants are used. Overall, anticoagulation therapy is complex and many circumstances can affect how these therapies are managed.
The duration of anticoagulation therapy is a key factor in clinical decision making. When proximal DVT is provoked by surgery or trauma a 3-month course of anticoagulation is standard. When a first VTE is proximal DVT that is either unprovoked or associated with transient non-surgical risk factor, low-dose anticoagulation beyond 3 to 6 months might be used. In those with an annual risk of VTE in excess of 9%, as after an unprovoked episode, extended anticoagulation is a possibility. Those who finish warfarin treatment after idiopathic VTE with an elevated D-dimer level show an increased risk of recurrent VTE, and this result might be used in clinical decision making. Thrombophilia test results rarely play a role in the length of treatment.
Treatment for acute leg DVT can continue at home instead of one being hospitalized. This applies as long as individuals feel ready for it, and those with severe leg symptoms or comorbidities would not qualify. An appropriate home environment is expected: one that can provide a quick return to the hospital if necessary, support from family or friends, and phone access. Walking is suggested for those without severe pain or edema. Graduated compression stockings—which apply higher pressure at the ankles and a lower pressure around the knees can be trialed for symptomatic management of acute DVT symptoms, but they are not recommended for reducing the risk of post-thrombotic syndrome, as the potential benefit of using them for this goal "may be uncertain". Nor are compression stockings likely to reduce VTE recurrence. They are, however, recommended in those with isolated distal DVT.

Investigations for cancer

An unprovoked VTE might signal the presence of an unknown cancer, as it is an underlying condition in up to 10% of unprovoked cases. A thorough clinical assessment is needed and should include a physical examination, a review of medical history, and universal cancer screening done in people of that age. A review of prior imaging is considered worthwhile, as is "reviewing baseline blood test results including full blood count, renal and hepatic function, PT and APTT." It is not recommended practice to obtain tumor markers or a CT of the abdomen and pelvis in asymptomatic individuals. NICE recommends that further investigations are unwarranted in those without relevant signs or symptoms.

Interventions

is the injection of an enzyme into the veins to dissolve blood clots, and while this treatment has been proven effective against the life-threatening emergency clots of stroke and heart attacks, randomized controlled trials have not established a net benefit in those with acute proximal DVT. Drawbacks of catheter-directed thrombolysis include a risk of bleeding, complexity, and the cost of the procedure. Thus, anticoagulation is the preferred treatment for DVT. However, this preference does not apply to those with DVT so severe that there is "impending venous gangrene". As of 2016, those thought to be the best candidates for catheter-directed thrombosis have iliofemoral DVT, symptoms for less than 14 days, good functional status, life expectancy of at least 1 year, and a low risk of bleeding. Of note, however, is that a variety of contraindications to thrombolysis exist. Catheter-directed thrombolysis against iliofemoral DVT has been associated with a reduction in the severity of post-thrombotic syndrome at an estimated cost-effectiveness ratio of about $138,000 per gained QALY. Phlegmasia cerulea dolens might be treated with catheter-directed thrombolysis. If found in the setting of acute compartment syndrome, an urgent fasciotomy is warranted.
The placement of an inferior vena cava filter is a potential treatment option when either the standard treatment for acute DVT, anticoagulation, is absolutely contraindicated, or if someone develops a PE despite being anticoagulated. However, a 2020 NICE review found "little good evidence" for their use. A 2018 study associated IVC filter placement with a 50% reduction in PE, a 70% increase in DVT, and an 18% increase in 30 day mortality when compared to no IVC placement. As such, if someone develops a PE despite being anticoagulated, care should be given to optimize anticoagulation treatment and address other related concerns before considering the placement of a IVC filter.
A mechanical thrombectomy device can remove venous clots, although the ACCP considers it an option only when the following conditions apply: "iliofemoral DVT, symptoms for < 7 days, good functional status, life expectancy of ≥ 1 year, and both resources and expertise are available." Anticoagulation alone is suggested over thrombectomy.

Prevention

For the prevention of blood clots in the general population, incorporating leg exercises and walking when sitting for hours at a time, having an active lifestyle, and maintaining a healthy body weight are recommended. Walking and leg exercises reduce venous stasis because leg muscle contractions compress the veins and pump blood up towards the heart. Excess body weight is modifiable unlike most risk factors, and interventions or lifestyle modifications that help someone who is overweight or obese lose weight reduce DVT risk. Statins have been investigated for primary prevention, and the JUPITER trial, which used rosuvastatin, has provided some tentative evidence of effectiveness. Out of all the statins that have been studied, rosuvastatin appears to be the only one with the potential to reduce VTE risk. However, the number needed to treat to prevent one initial VTE is about 2000, limiting its applicability.

After VTE

Anticoagulation, which increases the risk of bleeding, is sometimes used indefinitely in those with a high-risk for recurrence. The risk of major bleeding with long-term anticoagulation is about 3% per year, and the point where annual VTE risk is thought to warrant long-term anticoagulation is estimated to be between 3 and 9%. Usually, only when individuals exceed a 9% annual VTE risk is long-term anticoagulation a common consideration. For example, antithrombin deficiency, a strong or moderately strong risk factor, carries an annual risk of VTE of only 0.8–1.5%; as such, asymptomatic individuals with thrombophilia do not warrant long-term anticoagulation. If someone decides to stop anticoagulation after an unprovoked VTE instead of being on lifelong anticoagulation, aspirin can be used to reduce the risk of recurrence, but it is less effective at preventing VTE than anticoagulation. Statins have also been investigated for their potential to reduce recurrent VTE rates, with some studies suggesting effectiveness.

Hospital (non-surgical) patients

Acutely ill hospitalized patients are suggested to receive a parenteral anticoagulant, although the potential net benefit is uncertain. Critically ill hospitalized patients are recommended to either receive unfractionated heparin or low-molecular weight heparin instead of foregoing these medicines.

After surgery

Major orthopedic surgery—total hip replacement, total knee replacement, or hip fracture surgery—has a high risk of causing VTE. If prophylaxis is not used after these surgeries, symptomatic VTE has about a 4% chance of developing within 35 days. Following major orthopedic surgery, a blood thinner or aspirin is typically paired with intermittent pneumatic compression, which is the preferred mechanical prophylaxis over graduated compression stockings.
Options for VTE prevention in people following non-orthopedic surgery include early walking, mechanical prophylaxis, and blood thinners depending upon the risk of VTE, risk of major bleeding, and person's preferences. After low-risk surgeries, early and frequent walking is the best preventive measure.

Pregnancy

The risk of VTE is increased in pregnancy by about five times because of a more hypercoagulable state, a likely adaptation against fatal postpartum hemorrhage. Additionally, pregnant women with genetic risk factors are subject to a roughly three to 30 times increased risk for VTE. Preventive treatments for pregnancy-related VTE in hypercoagulable women were suggested by the ACCP in 2012. Homozygous carriers of factor V Leiden or prothrombin G20210A with a family history of VTE were suggested for antepartum LMWH and either LMWH or a vitamin K antagonist for the six weeks following childbirth. Those with another thrombophilia and a family history but no previous VTE were suggested for watchful waiting during pregnancy and LMWH or—for those without protein C or S deficiency—a VKA. Homozygous carriers of factor V Leiden or prothrombin G20210A with no personal or family history of VTE were suggested for watchful waiting during pregnancy and LMWH or a VKA for six weeks after childbirth. Those with another thrombophilia but no family or personal history of VTE were suggested for watchful waiting only. Warfarin, a common VKA, can cause harm to the fetus and is not used for VTE prevention during pregnancy.

Travelers

Suggestions for at-risk long-haul travelers include calf exercises, frequent walking, and aisle seating in airplanes to ease walking. Graduated compression stockings have sharply reduced the levels of asymptomatic DVT in airline passengers, but the effect on symptomatic DVT, PE, or mortality is unknown, as none of the individuals studied developed these outcomes. However, graduated compression stockings are not suggested for long-haul travelers without risk factors for VTE. Likewise, neither aspirin nor anticoagulants are suggested in the general population undertaking long-haul travel. Those with significant VTE risk factors undertaking long-haul travel are suggested to use either graduated compression stockings or LMWH for VTE prevention. If neither of these two methods are feasible, then aspirin is suggested.

Prognosis

As DVT is most frequently a disease of older age that occurs in the context of nursing homes, hospitals, and active cancer, DVT is associated with a 30-day mortality rate of about 6%. PE is the cause of most of these deaths. Proximal DVT is frequently associated with PE, unlike distal DVT, which is rarely if ever associated with PE. Around 56% of those with proximal DVT also have PE, although a chest CT is not needed simply because of the presence of a DVT. If proximal DVT is left untreated, in the following 3 months approximately half of people will experience symptomatic PE.
Another frequent complication of proximal DVT, and the most frequent chronic complication, is post-thrombotic syndrome, where individuals have chronic venous symptoms. Symptoms can include pain, itching, swelling, paresthesia, a sensation of heaviness, and in severe cases, leg ulcers. After proximal DVT, an estimated 20–50% of people develop the syndrome, with 5–10% experiencing severe symptoms. Post-thrombotic syndrome can also be a complication of distal DVT, though to a lesser extent than with proximal DVT.
Recurrence of DVT is another potential consequence. In the 10 years following an initial VTE, about 30% of people will have a recurrence. VTE recurrence in those with prior DVT is more likely to recur as DVT than PE. Cancer and unprovoked DVT are strong risk factors for recurrence. After initial proximal unprovoked DVT with and without PE, 16–17% of people will have recurrent VTE in the 2 years after they complete their course of anticoagulants. VTE recurrence is less common in distal DVT than proximal DVT. In upper extremity DVT, annual VTE recurrence is about 2–4%. After surgery, a provoked proximal DVT or PE has an annual recurrence rate of only 0.7%.

Epidemiology

About 1.5 out of 1000 adults a year have a first VTE in high-income countries, and about 5–11% of people will develop VTE in their lifetime. VTE becomes much more common with age. VTE rarely occurs in children, but when it does, it predominantly affects hospitalized children. Children in North America and the Netherlands have VTE rates that range from 0.07 to 0.49 out of 10,000 children annually. Meanwhile, almost 1% of those aged 85 and above experience VTE each year. About 60% of all VTEs occur in those 70 years of age or older, and those aged 65 and above are subject to about a 15 times higher risk than those aged 40 and below. Incidence is about 18% higher in males than in females. VTE occurs in association with hospitalization or nursing home residence about 60% of the time, active cancer about 20% of the time, and a central venous catheter or transvenous pacemaker about 9% of the time.
During pregnancy and after childbirth, acute VTE occurs about 1.2 of 1000 deliveries. Despite it being relatively rare, it is a leading cause of maternal morbidity and mortality. After surgery with preventive treatment, VTE develops in about 10 of 1000 people after total or partial knee replacement, and in about 5 of 1000 after total or partial hip replacement. About 400,000 Americans develop an initial VTE each year, with 100,000 deaths or more attributable to PE. In England, an estimated 25,000 a year die from hospital-related VTE. Asian and Hispanic individuals have a lower VTE risk than whites or blacks.
In North American and European populations, around 4–8% of people have a thrombophilia, most commonly factor V leiden and prothrombin G20210A. For populations in China, Japan, and Thailand, deficiences in protein S, protein C, and antithrombin predominate. Non-O blood type is present in around 50% of the general population and varies with ethnicity, and it is present in about 70% of those with VTE. Altogether, global data is incomplete, and as of 2011, available data was dominated by North American and European populations.
DVT occurs in the upper extremities in about 4–10% of cases, with an incidence of 0.4–1.0 people out of 10,000 a year. A minority of upper extremity DVTs are due to Paget–Schroetter syndrome, also called effort thrombosis, which occurs in 1–2 people out of 100,000 a year, usually in athletic males around 30 years of age or in those who do significant amounts of overhead manual labor.

Social

Being on blood thinners because of DVT can be life-changing for patients because it may prevent them from continuing lifestyle activities such as contact or winter sports to prevent bleeding episodes after potential injuries. Head injuries prompting brain bleeds are of particular concern. This has caused NASCAR driver Brian Vickers to forego participation in races. Professional basketball players including NBA players Chris Bosh and hall of famer Hakeem Olajuwon have dealt with recurrent blood clots, and Bosh's career was significantly hampered by DVT and PE.
Tennis star Serena Williams was hospitalized in 2011 for PE thought to have originated from a DVT. Years later, in 2017, due to her knowledge of DVT and PE, Serena accurately advocated for herself to have a PE diagnosed and treated. During this encounter with VTE, she was hospitalized after a C-section surgery and was off of blood thinners. After feeling the sudden onset of a PE symptom, shortness of breath, she told her nurse and requested a CT scan and an IV heparin drip, all while gasping for air. She started to receive an ultrasound to look for DVT in the legs, prompting her to express dissatisfaction to the medical staff that they were not looking for clots where she had symptoms, and they were not yet treating her presumed PE. After being diagnosed with PE and not DVT, and after receiving heparin by IV, the coughing from the PE caused her C-section surgical site to open and the heparin contributed to bleeding at the site. Serena later received an IVC filter while in the hospital.
Other notable people have been affected by DVT. Former US President Richard Nixon had recurrent DVT, and so has former Secretary of State Hillary Clinton. She was first diagnosed while First Lady in 1998 and again in 2009. Dick Cheney was diagnosed with an episode while Vice President, and TV show host Regis Philbin had a DVT after hip-replacement surgery. DVT has also contributed to the deaths of famous people. For example, DVT and PE played a role in rapper Heavy D's death at age 44. NBC journalist David Bloom died at age 39 while covering the Iraq War from a PE that was thought to have progressed from a missed DVT. And actor Jimmy Stewart had a DVT that progressed to a PE and triggered a fatal heart attack when he was 89.

Field of medicine

Patients with a history of DVT might be managed by primary care, general internal medicine, hematology, cardiology, vascular surgery, or vascular medicine. Patients suspected of having an acute DVT are often referred to the emergency department for evaluation. Interventional radiology is the specialty that typically places and retrieves IVC filters, and vascular surgery might do catheter directed thrombosis for some severe DVTs.

History

The earliest case of DVT was described by Sushruta in his book Sushruta Samhita around 600–900 BC. The next case was not described until 1271, in the leg of a 20-year-old male. At some point, the increased incidence of DVT in women after childbirth was noticed, and in the late 1700s, a public health recommendation was issued to encourage women to breastfeed as a means to prevent this phenomenon; the DVT was called "milk leg", as it was thought to result from milk building up in the leg.
In 1856, German physician and pathologist Rudolf Virchow published what is referred to as Virchow's triad, the three major causes of thrombosis. The triad provides the theoretical framework for the current explanation of venous thrombosis, although it was focused on the effect of a foreign body in the venous system and the conditions required for clot propagation.
Methods to observe DVT by ultrasound were established in the 1960s. Diagnoses were commonly performed by impedance plethysmography in the 1970s and 1980s, but ultrasound, particularly after utility of probe compression was demonstrated in 1986, became the preferred diagnostic method. Yet, in the mid 1990s, contrast venography and impedance plethysmography were still described as common.
Multiple pharmacological therapies for DVT were introduced in the 20th century: oral anticoagulants in the 1940s, subcutaneous injections of LDUH in 1962 and subcutaneous injections of LMWH in 1982. For around 50 years, a months-long warfarin regimen was the mainstay of pharmacological treatment. To avoid the blood monitoring required with warfarin and the injections required by heparin and heparin-like medicines, a new generation of oral anticoagulant pills that do not require blood monitoring has sought to replace these traditional anticoagulants. In the late 2000s to early 2010s, direct oral anticoagulants—including rivaroxaban, apixaban, and dabigatran —came to the market, making this field of medicine fast changing. The New York Times described a "furious battle" among the three makers of these drugs "for the prescription pads of doctors".

Economics

Initial DVT costs for an average hospitalized patient in the U.S. are around $7,700–$10,800. VTE follow-up costs at three months, six months, and a year are about $5,000, $10,000, and $33,000 respectively; in Europe, the three and six-month figures are about €1,800 and €3,200. Post-thrombotic syndrome is a significant contributor to DVT follow-up costs. Annual DVT costs in the U.S. are an estimated $5 billion or in excess of $8 billion, and the average annual cost per treated individual is thought to be about $20,000. As an example, if 300,000 symptomatic DVT patients were treated at costs averaging $20,000 annually, that would cost $6 billion a year.

Research directions

A 2019 study published in Nature Genetics reported more than doubling the known genetic loci associated with VTE. In their updated 2018 clinical practice guidelines, the American Society of Hematology identified 29 separate research priorities, most of which related to patients who are acutely or critically ill. Inhibition of Factor XI, P-selectin, E-selectin, and a reduction in formation of neutrophil extracellular traps are potential therapies that might treat VTE without increasing bleeding risk.